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THE INTUITIONISM BEHIND STATECHARTS STEPS�

GERALD L�UTTGENy AND MICHAEL MENDLERz

Abstract. The semantics of Statecharts macro steps, as introduced by Pnueli and Shalev, lacks compo-

sitionality. This report �rst analyzes the compositionality problem and traces it back to the invalidity of the

Law of the Excluded Middle. It then characterizes the semantics via a particular class of linear, intuitionis-

tic Kripke models, namely stabilization sequences. This yields, for the �rst time in the literature, a simple

fully{abstract semantics which interprets Pnueli and Shalev's concept of failure naturally. The results not

only give insight into the semantic subtleties of Statecharts, but also provide a basis for an implementation,

for developing algebraic theories for macro steps, and for comparing di�erent Statecharts variants.

Key words. Statecharts, compositionality, full abstraction, intuitionistic Kripke semantics
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1. Introduction. Statecharts is a well{known visual design notation for specifying the behavior of

reactive systems [7]. It extends �nite state machines with concepts of (i) hierarchy, so that one may speak

of a state as having sub{states, (ii) concurrency, thereby allowing the de�nition of systems having simulta-

neously active sub{systems, and (iii) priority, such that one may express that certain system activities have

precedence over others. The success of Statecharts in the software{engineering community is founded on the

language's capability for intuitively modeling the complex control aspects inherent in many software systems.

However, the search for a practically and theoretically satisfying semantics for Statecharts is still actively

pursued at many academic and industrial research laboratories and has led to the de�nition of numerous

Statecharts variants [20].

In a seminal paper, Pnueli and Shalev presented two equivalent formalizations of Statecharts seman-

tics [17]. According to their semantic model, a Statechart may respond to an event entering the system by

engaging in an enabled transition. This may generate new events which, by causality, may in turn trigger

additional transitions while disabling others. The synchrony hypothesis ensures that one execution step,

a so{called macro step, is complete as soon as this chain reaction comes to a halt. Unfortunately, Pnueli

and Shalev's semantics violates the desired property of compositionality which is a prerequisite for modular

analyses of Statecharts speci�cations as well as for compositional code generation. Huizing and Gerth [10]

showed that combining compositionality, causality, and the synchrony hypothesis cannot be done within a

simple, single{leveled semantics. Some researchers then devoted their attention to investigating new variants

of Statecharts, obeying just two of the three properties. In esterel [3] and argos [16], causality is treated

separately from compositionality and synchrony, while in (synchronous) statemate [8] the synchrony hy-
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pothesis is rejected. Other researchers achieved combining all three properties by storing complex semantic

information via preorders [13, 15, 18] or transition systems [6, 14]. However, no analysis of exactly how much

information is needed to achieve compositionality has been made so far.

This report �rst illustrates the compositionality defect of Pnueli and Shalev's semantics by showing that

equality of response behavior is not preserved by the concurrency and hierarchy operators of Statecharts. The

reason is that macro steps abstract from causal interactions with a system's environment, thereby imposing

a closed{world assumption. Indeed, the studied problem can be further traced back to the invalidity of the

Law of the Excluded Middle. To overcome the problem, we interpret Statecharts, relative to a given system

state, as intuitionistic formulas. These are given meaning as speci�c intuitionistic Kripke structures [19],

namely linear increasing sequences of event sets, called stabilization sequences, which encode interactions

between Statecharts and environments. In this domain, which we characterize via semi{lattices and in which

Pnueli and Shalev's semantics may be explained by considering a distinguished sub{domain, we develop a

fully{abstract macro{step semantics in two steps. First, we study Statecharts without hierarchy operators

which are in fact choice operators in our setting since we observe single macro steps only. We show that

in this fragment, stabilization sequences naturally characterize the largest congruence contained in equality

of response behavior. In the second step, based on a non{standard distributivity and expansion law, as

well as our lattice{theoretic characterization of the intuitionistic semantics, we lift our results to arbitrary

Statecharts. It is worth remarking that these results are achieved in a slightly extended Statecharts algebra

that allows for general choice operators and also introduces explicit failure events. We show that this

extension is conservative over the standard \visual" syntax of Statecharts. As a byproduct, this report

suggests a natural way of admitting disjunctions in transition triggers, thereby solving a logical inadequacy

of Pnueli and Shalev's setting. Moreover, our results build a foundation for an e�cient implementation

of Pnueli and Shalev's semantics that avoids backtracking, for algebraic characterizations of macro{step

semantics, and also for comparisons among related Statecharts variants.

The remainder of this report is organized as follows. The next section presents our notation for State-

charts, recalls the classic Statecharts semantics of Pnueli and Shalev, and analyzes the compositionality

problem. Sec. 3 presents a new intuitionistic semantics for Statecharts macro steps, characterizes Pnueli

and Shalev's semantics within the novel framework, and provides a full-abstraction result for the Statecharts

language without hierarchy operator. The latter result is extended to the full language in Sec. 4. Finally,

Secs. 5 and 6 discuss related work and present our conclusions and directions for future work, respectively.

The appendices contain some longer proofs as well as some complimentary technical material.

2. Statecharts: Syntax, Semantics, and Compositionality. Statecharts is a visual language for

specifying reactive systems, i.e., concurrent systems interacting with their environment. They subsume

labeled transition systems where labels are pairs of event sets. The �rst component of a pair is referred to

as trigger, which may include negative events, and the second as action. Intuitively, a transition is enabled if

the environment o�ers all events in the trigger but not the negative ones. When a transition �res, it produces

the events speci�ed in its action. Concurrency is introduced by allowing Statecharts to run in parallel and

to communicate by broadcasting events. Additionally, basic states may be hierarchically re�ned by injecting

other Statecharts. This creates composite states of two possible sorts, which are referred to as and{states

and or{states, respectively. Whereas and{states permit parallel decompositions of states, or{states allow

for sequential decompositions. Consequently, an and{state is active if all of its sub{states are active, and an

or{state is active if exactly one of its sub{states is.
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Fig. 2.1. Two example Statecharts

As an example, the Statechart in Fig. 2.1 on the left consists of and{state s16 which puts and{state s14

and or{state s56 in parallel. Similarly, state s14 is a parallel composition of or{states s12 and s34. Each of

these or{states describes a sequential state machine and is re�ned by two basic states. In case of s12, basic

state s1 is the initial state which is connected to basic state s2 via transition t1. Here, s1 is the source state

of t1, state s2 is its target state, \�" symbolizes its empty trigger, and a is its action. Hence, t1 is always

enabled regardless of the events o�ered by the environment. Its �ring produces event a and switches the

active state of s12 from s1 to s2. This initiates a causal chain reaction, since the generation of a in turn

triggers transition t3 in parallel component s56 which introduces event b. As a consequence, transition t2 in

or{state s34 becomes enabled and �res within the same macro step.

The Statechart depicted in Fig. 2.1 on the right is like the one on the left, except that and{state s14

is replaced by or{state s79. The latter state encodes a choice regarding the execution of transitions t4

and t5 from state s7. The trigger of t4 is b, i.e., t4 is triggered by the absence of event b. Starting with an

environment o�ering no event, thus assuming b to be absent, and{state s59 can autonomously engage in t4.

The generation of a in turn triggers transition t3 which �res and produces b. However, t4 was �red under the

assumption that b is absent. Since Statecharts is a synchronous language and no event can be simultaneously

present and absent within the same macro step, this behavior is rejected as globally inconsistent. Thus, the

response of s59 to the empty environment is failure, which is operationally di�erent from an empty response.

2.1. Statecharts Con�gurations and Step Semantics. Like [17] we present the semantics of Stat-

echarts as a single{step semantics which is given relative to a �xed but arbitrary set of active states. As

a consequence, Statecharts' hierarchy operator acts exactly like a choice operator. Formally, let � and T

be countably in�nite sets of events and transition names, respectively. For every event e 2 �, its negative

counterpart is denoted by e. We de�ne e =df e and write E for fe j e 2 Eg. With every t 2 T , we associate

a transition E=A consisting of a trigger trg(t) =df E ��n � [ � and an action act(t) =df A ��n �, where E

and A are required to be �nite sets. For simplicity, we use the abbreviation e1 � � � en=a1 � � � am for transition

fe1; : : : ; eng=fa1; : : : ; amg, and we denote an empty trigger or action in a transition by symbol `�'. We also

write P;N=A for label E=A when we wish to distinguish the set P =df E \� of positive trigger events from

the set N =df E \ � of negative trigger events. Now, we are able to describe a Statechart relative to a set

of active states as a term in the BNF

C ::= 0 j x j t j C k C j C + C ;

where t 2 T and x is a variable. Terms not containing variables are called con�gurations. Intuitively,

con�guration 0 represents a Statechart state with no outgoing transitions (basic state), C k D denotes

the parallel composition of con�gurations C and D (and{state), and C + D stands for the choice between

executing C or D (or{state). As mentioned earlier, the latter construct + coincides with Statecharts'
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hierarchy operator, which reduces to choice when considering single macro steps only; thus, we refer to

operator + also as choice operator. Moreover, in the visual Statecharts notation, C + D is somewhat more

restrictive, in that it requires D to be a choice of transitions. For instance, (t1 k t2) + (t3 k t4) is prohibited

in Statecharts visual syntax whereas it is a valid con�guration in our setting. Semantically, however, our

generalization is inessential with respect to the considered semantics of Pnueli and Shalev, as we will show

in Sec. 4.4. The set of all con�gurations is denoted by C and ranged over by C and D. The set of \+"{free,

or parallel, con�gurations is written as PC. We call terms �[x] with a single variable occurrence x contexts,

and write �[C] for the substitution of C for x in �[x]. Contexts of form x k C and x + C are referred to

as parallel contexts and choice contexts, respectively. We tacitly assume that transition names are unique in

every term, and we let trans(C) stand for the set of transition names occurring in C.

Any Statechart in a given set of active states corresponds to a con�guration. For example, Statecharts s14

and s79, in their initial state, correspond to con�gurations C14 =df t1 k t2 and C79 =df t4 + t5, respectively.

The Statecharts depicted in Fig. 2.1 are then formalized as C16 =df �56[C14] and C59 =df �56[C79], re-

spectively, using the parallel context �56[x] =df x k t3. Moreover, since transitions are uniquely named in

con�gurations and thus may be associated with their source and target states, one can easily determine the

set of active states reached after �ring a set of transitions; see [17] for details. As in [17], we do not consider

interlevel transitions and state references [20] to keep our syntax for Statecharts su�ciently simple. Although

the syntax would have to be extended, our semantics can accommodate these features, too. Finally, we want

to remark that the unique naming of transitions is not an essential assumption but just a convenient means

in the operational semantics to de�ne the step response of a Statechart con�guration. We will see that the

intuitionistic model theory developed in this report allows us to do away with naming transitions.

To present the response behavior of a con�guration C, as de�ned by Pnueli and Shalev, we have to

determine which transitions in trans(C) may �re together to form a macro step. A macro step comprises

a maximal set of transitions that are triggered by events o�ered by the environment or produced by the

�ring of other transitions, that are mutually consistent (\orthogonal"), and that obey causality and global

consistency. We start o� by formally introducing some of these notions.

� A transition t is consistent with T � trans(C), in signs t 2 consistent(C; T ), if t is not in the same

parallel component as any t0 2 T . Formally,

consistent(C; T ) =df ft 2 trans(C) j 8t0 2 T: t4Ct
0g ;

where t4Ct
0, if t = t0 or if t and t0 are on di�erent sides of an occurrence of k in C.

� A transition t is triggered by a �nite set E of events, in signs t 2 triggered(C;E), if the positive, but

not the negative trigger events of t are in E. Formally,

triggered(C;E) =df ft 2 trans(C) j trg(t) \ � � E and (trg(t) \ �) \E = ;g :

� A transition t is enabled in C with respect to a �nite set E of events and a set T of transitions, if

t 2 enabled(C;E; T ) where

enabled(C;E; T ) =df consistent(C; T ) \ triggered(C;E [
[
t2T

act(t)) :

Intuitively, assuming transitions T are known to �re, enabled(C;E; T ) determines the set of all

transitions of C that are enabled by the actions of T and the environment events in E. In the

following, we use act(T ) as an abbreviation for
S
t2T act(t).
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With these preliminaries, we may now present Pnueli and Shalev's iterative step{construction procedure [17]

for causally determining macro steps relative to a con�guration C and a �nite set E of environment events.

procedure step{construction(C, E);

var T := ;;

while T � enabled(C;E; T ) do

choose t 2 enabled(C;E; T ) n T ;

T := T [ ftg

od;

if T = enabled(C;E; T ) then return T

else report failure

end step{construction.

This procedure computes nondeterministically, relative to a con�guration C and a �nite environment E,

those sets T of transitions that can �re together in a macro step. Note that due to failures raised when

detecting global inconsistencies, the step construction might involve backtracking, which makes the above

algorithm ine�cient for implementation. To highlight the role of failures further in this report, it will be

useful to introduce a special failure event ? 2 � in order to represent the failure behavior of the step

semantics explicitly. For instance, we can then de�ne transition a=? which raises a failure exception as soon

as event a becomes present. Note that, e.g., the �ring of transition a=a, which can already be expressed in

the standard syntax, raises a failure in the absence of event a. Hence, adding an explicit ? event makes

the representation of failure behavior more symmetric in that it allows us to enforce the presence as well

as the absence of certain events in a macro step. It should be stressed that, as we will show in Sec. 4.4,

adding event ? is a conservative extension that does not change the semantics of the original Statecharts

language. It permits, however, a more uniform algebra of con�gurations. In particular, having? available has

the important technical advantage that certain semantic constructions on the original Statecharts language

become syntactically representable. Moreover, there are also new behaviors expressible that may be useful

in applications. Therefore, we will study both variants of Statecharts semantics, with and without ?, in the

remainder of this report.

Following Pnueli and Shalev, a set T of transitions is called constructible, for a given con�guration C and

a �nite set E of environment events, if and only if it can be obtained as a result of successfully executing pro-

cedure step{construction. Whenever we wish to indicate the environment, we say that T is E{constructible.

For each E{constructible set T , set A =df E [ act(T ) ��n � is called the (step) response of C for E, in

signs C +E A. If event ? is considered, we also require ? 62 A. Moreover, if E = ;, we simply write C + A.

Note that E may also be modeled by a parallel context consisting of a single transition �=E, as C +E A if

and only if (C k �=E) + A holds. Pnueli and Shalev also provided an equivalent declarative de�nition of

their operational step semantics. A set T of transitions is called E{separable for C if there exists a proper

subset T 0 � T such that enabled(C;E; T 0) \ (T n T 0) = ;. Further, T is E{admissible for C if (i) T is E{

inseparable for C, (ii) T = enabled(C;E; T ), and (iii) ? 62 act(T ). When con�guration C and environment E

are understood, we also say that T is admissible or separable, respectively.

Theorem 2.1 (Pnueli & Shalev [17]). For all con�gurations C 2 C and event sets E ��n �, a set T of

transitions is E{admissible for C if and only if T is E{constructible for C.

While this theorem emphasizes the mathematical elegance of Pnueli and Shalev's semantics, it still does not
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support implementations. However, because of Thm. 2.1, one may confuse the notions of constructibility

and admissibility. In fact, the approach we are going to present in the following sections is derived more

conveniently from the declarative characterization.

2.2. The Compositionality Problem. The macro{step semantics induces a natural equivalence re-

lation � over con�gurations, called step equivalence, satisfying C � D, whenever C +E A if and only if

D +E A, for all E;A ��n �. For simplicity, � does not account for target states of transitions since these

can be encoded in event names. The compositionality defect of the macro{step semantics manifests itself

in the fact that � is not a congruence for the con�guration algebra. Consider our example of Fig. 2.1 and

assume that states s2, s4, s6, s8, and s9 are all equivalent. It is easy to see that con�gurations C14 and C79

have the same response behavior. Both C14 +E A and C79 +E A are equivalent to A = E [ fag, no matter

whether event b is present or absent in environment E. However, �56[C14] = C16 6� C59 = �56[C79], since

C16 + fa; bg but C59 6+ A, for any A ��n �, as C59 always fails for the empty environment. Hence, the

equivalence C14 � C79 is not preserved by context �56[x]. The intuitive reason for why C14 and C79 are

identi�ed in the �rst place is that the response semantics does not account for any proper interaction with the

environment. It adopts the classic closed{world assumption which states that every event is either present

from the very beginning of a given macro step or will never arise. This eliminates the possibility that events

may be generated due to interactions with the environment, such as event b in C16 + fa; bg. In short, a

compositional macro{step semantics does not validate the Law of the Excluded Middle b _ :b = true. Since

intuitionistic logic [19] di�ers from classic logic by refuting the Law of the Excluded Middle, it is a good

candidate framework for analyzing the step semantics of Statecharts.

It must be stressed that the compositionality defect is an issue of parallel composition k and not of

operator +. Con�guration C79 = b=a + b=a has exactly the same behavior as con�guration C 0
79 =df b=a k b=a

which we could have used instead. The compositionality problem can also be demonstrated by the two parallel

con�gurations D1 =df �=a k b=c and D2 =df b=a k b=ac which have the same step responses but can be

distinguished in context �56[x], as �56[D1] + fa; b; cg but �56[D2] 6+ A, for any A ��n �.

Our goal is to characterize the largest congruence', called step congruence, contained in step equivalence,

where C ' D, if �[C] � �[D], for all contexts �[x]. While the compositionality defect is well{known, a fully{

abstract semantics with respect to Pnueli and Shalev's macro{step semantics has not yet been presented

in the literature. Of course, one can trivially obtain that C ' D is equivalent to [[C]]0 = [[D]]0, where

[[C]]0 =df fhA;�[x]i j�[C] + Ag. However, [[ � ]]0 is a syntactic characterization rather than a semantic one,

which we will develop below. Note that we intend to achieve compositionality in the declarative sense of a

fully{abstract semantics and not in the constructive sense of a denotational semantics (cf. Sec. 5).

3. Intuitionistic Semantics via Stabilization Sequences. We start o� by investigating parallel

con�gurations within parallel contexts, for which many semantic insights may already be obtained. First,

we propose a novel intuitionistic semantics for this fragment, then show its relation to Pnueli and Shalev's

original semantics, and �nally derive a full{abstraction result. The next section generalizes this result to

arbitrary con�gurations within arbitrary contexts.

Our new semantic interpretation of parallel con�gurations C, based on an \open{world assumption," is

given in terms of �nite increasing sequences of worlds (or states) E0 � E1 � � � � � En, for some natural

number n. Each Ei ��n � n f?g is the set of events generated or present in the respective world, and the

absence of ? ensures that each world is consistent. A sequence represents the interactions between C and
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a potential environment during a macro step. Intuitively, the initial world E0 contains all events e which

are generated by those transitions of C that can �re autonomously. When transitioning from world Ei�1

to Ei, some events in Ei n Ei�1 are provided by the environment, as reaction to the events validated by C

when reaching Ei�1. The new events destabilize world Ei�1 and may enable a chain reaction of transitions

within C. The step{construction procedure, which tracks and accumulates all these events, then de�nes the

new world Ei. In accordance with this intuition, we call the above sequences stabilization sequences. The

overall response of C after n interactions with the environment is the event set En.

The monotonicity requirement of stabilization sequences re
ects the fact that our knowledge of the

presence and absence of events increases in the process of constructing a macro step. More precisely, each

world contains the events assumed or known to be present. Only if an event is not included in the �nal

world, it is known to be absent for sure. The fact that an event e is not present in a world, e =2 E(i), does

not preclude e from becoming available later in the considered stabilization sequence. This semantic gap

between \not present" and \absent" makes the underlying logic intuitionistic as opposed to classic. Indeed,

we shall see that parallel con�gurations are most naturally viewed as intuitionistic formulas specifying linear

intuitionistic Kripke models.

3.1. Intuitionistic Semantics for Parallel Con�gurations. Formally, a stabilization sequence M

is a pair (n; V ), where n 2 N n f0g is the length of the sequence and V is a state valuation, i.e., a monotonic

mapping from the interval [0; : : : ; n � 1] to �nite subsets of � n f?g. Stabilization sequences of length n

are also referred to as n{sequences. It will be technically convenient to assume that M is irredundant, i.e.,

V (i� 1) � V (i), for all 0 < i < n. This assumption, however, is not important for the results in this report.

Definition 3.1 (Sequence Model). Let M = (n; V ) be a stabilization sequence and C 2 PC. Then,

M is said to be a sequence model of C, if M j= C, where the satisfaction relation j= is de�ned along the

structure of C as follows:

1. Always M j= 0,

2. M j= C k D if M j= C and M j= D, and

3. M j= P;N=A if both N \ V (n� 1) = ; and P � V (i) imply A � V (i), for all i < n.

This de�nition is a shaved version of the standard semantics obtained when reading C 2 PC as an intu-

itionistic formula [19], i.e., when taking events to be atomic propositions and replacing a by negation :a,

concatenation of events and \k" by conjunction \^", and the transition slash \=" by implication \�". An

empty trigger, an empty action, and con�guration 0 are identi�ed with true. Then, M j= C if and only

if C holds for the intuitionistic Kripke structure M . In the sequel, we abbreviate the set fM jM j= Cg of

sequence models of C by SM (C). It will sometimes be useful to consider the sequence models 2SM (C) of C

of length at most two only, i.e., 2SM (C) =df f(n; V ) j (n; V ) 2 SM (C) and n � 2g.

In our introductory example, con�guration C79 is behaviorally equivalent to C 0
79 =df b=a k b=a. The

latter con�guration may be identi�ed with formula (:b � a)^ (b � a) which states \if b is absent throughout

a macro step or b is present throughout a macro step, then a is asserted." In classic logic, con�guration C 0
79

would be deemed equivalent to the single transition C12 = �=a corresponding to formula true � a. As

mentioned before, this is inadequate as both do not have the same operational behavior, since C 0
79 k a=b

fails whereas C12 k a=b has step response fa; bg in the empty environment. In our intuitionistic semantics,

the di�erence is faithfully witnessed by the 2{sequenceM = (2; V ), where V (0) =df fag and V (1) =df fa; bg.

Here, M is a sequence model of con�guration C 0
79 but not of con�guration C12.
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As another example, consider con�gurations a=a and �=a corresponding to formulas :a � a and true � a,

respectively. In classic logic both are equivalent. Yet, they di�er in their operational behavior. The former

con�guration fails in the empty environment while the latter produces response fag. In our intuitionistic

semantics, however, both are distinguished: :a � a speci�es \eventually a must be present," as a=a expects

the environment to assert event a in order to avoid failure. This is di�erent from true � a which speci�es

\always a." Formally, formula :a � a possesses two sequence models over set fag: (i) 2{sequence (2; V1),

where V1(0) =df ; and V1(1) =df fag, and (ii) 1{sequence (1; V2), where V2(0) =df fag. However, according

to Def. 3.1, (2; V1) is not a sequence model of formula true � a. Finally, consider formula (a � b) ^ (b � a)

which corresponds to con�guration a=b k b=a. This has also exactly two sequence models over event

set fa; bg: (i) 2{sequence (2;W1), where W1(0) =df ; and W1(1) =df fa; bg, and (ii) 1{sequence (1;W2) with

W2(0) =df ;. Hence, the environment has to provide at least one event, a or b, in order for response fa; bg to

occur, i.e., the transitions a=b and b=a cannot mutually trigger each other, in accordance with the principle

of causality [20].

Note that the classic semantics is contained in the intuitionistic one by considering 1{sequences only.

More precisely, every 1{sequence M = (1; V ) may be identi�ed with a Boolean valuation V 0 2 � ! B by

taking V 0(a) = tt if and only if a 2 V (0). Then, M j= C if and only if C classically evaluates to tt under

valuation V 0. Moreover, it will be convenient to identify a 1{sequence (1; V ) with a subset of events, i.e., the

set V (0) ��n � n f?g. Vice versa, a subset A ��n � n f?g induces the 1{sequence (1; V ), where V (0) =df A.

Every n{sequence also contains a distinguished classic structure, namely its �nal state. We refer to the �nal

state of M = (n; V ) as M�, i.e., M� = (1; V �) where a 2 V �(0) if and only if a 2 V (n� 1); sometimes, M�

is simply identi�ed with the �nal state V (n � 1). Finally, we also employ the notation M i, for i < n, to

denote the su�x sequence of M that starts at state i, i.e., M i =df (n� i; V i) where V i(j) =df V (i + j). It

is easy to show that whenever M 2 SM (C) then M i 2 SM (C), too.

Proposition 3.2. Let C 2 PC and M be a n{sequence. Then, M j= C implies M i j= C, for all i < n.

As a consequence, one may always construct a model in 2SM (C) when given a model in SM (C).

3.2. Characterization of Pnueli and Shalev's Semantics. We now show that the step responses

of a parallel con�guration C, according to Pnueli and Shalev's semantics, can be characterized as particular

sequence models of C, to which we refer as response models. The response models of C are those 1{sequence

models of C, i.e., subsets A ��n � n f?g, that do not occur as the �nal world of any other sequence model

of C except itself. Intuitively, the validity of this characterization is founded in Pnueli and Shalev's closed{

world assumption which requires a response to emerge from within the considered con�guration and not by

interactions with the environment. More precisely, if event set A occurs as the �nal state of an n{sequence

model M , where n > 1, then M represents a proper interaction sequence of the considered con�guration

with its environment that must occur in order for C to participate in response A. Hence, if there is no

non{trivial n{sequence with M� = A, then C can produce A as an autonomous response.

Definition 3.3 (Response Model). Let C 2 PC. Then, M = (1; V ) 2 SM (C) is a response model of C

if K� =M� implies K =M , for all K 2 SM (C). The set of response models of C is denoted RM (C).

Hence, response models of C may be identi�ed with speci�c classic models of C. Observe, however, that

their de�nition involves essential reference to the intuitionistic semantics of con�gurations.

Theorem 3.4 (Characterization). Let C 2 PC and E;A ��n �. Then, C +E A if and only if A is a

response model of con�guration C k �=E.
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Proof. Let us start with a comment concerning our notation for transitions. In this and in the following

proofs we will often identify a transition P;N=B with the intuitionistic formula P ^:N � B. More precisely,

formulas P and B stand for the conjunctions of the events in sets P and B, respectively, and formula :N

abbreviates the conjunction of the negations of all events in set N . This propositional notation re
ects

precisely our intuitionistic semantics of Def. 3.1. Since C +E A if and only if (C k �=E) + A, it su�ces to

show that D + A if and only if A is a response model of D, for all D 2 PC and A ��n �.

� \=)": LetD + A, and let T be the set of admissible transitions generating responseA; in particular,

? =2 A. We show that A is a response model of D. Let us �rst convince ourselves that A is a model

ofD, i.e., A j= D. Recall that we identify A with the stabilization sequence (1; V ), where V (0) =df A.

Let t = P ^:N � B be a transition from D. Suppose that A j= P ^:N , i.e., P � A and N \A = ;.

Since A is the set of events generated from T and since t is enabled by A, we conclude that t must

have �red, i.e., t 2 T . This implies B � A. Thus, A j= B, which proves A j= t. Since t was arbitrary,

A validates all (parallel) transitions of D, whence A j= D, as desired.

Next we show that A is in fact a response model, i.e., there exists no non{classic irredundant

extension of A that is a model of D. Suppose K = (n; V ) is such an irredundant n{sequence model

of D with K� = A and K j= D. If n = 1, then K = A, and we are done. Otherwise, if n � 2, the

sequence K has at least two states; in particular, we must have V (n � 2) � A. Sequence model K

has the following useful properties:

(1) 8b 2 �: A j= :b implies K j= :b , i.e., A and K have the same negated truths.

(2) 9a 2 �: A j= a but K 6j= a .

Prop. (1) implies that K satis�es the negative triggers of all transitions that have �red to produce A,

since those are all valid in A and, hence, must be valid in K. Now, we use the fact that if T is

the set of transitions | or, more precisely, their corresponding formulas | which have �red to

produce A and if :R are the cumulated negative triggers, then T ^:R j= A is a valid consequence in

intuitionistic logic. This can be shown without di�culties as an auxiliary lemma, using essentially

the deductive nature of the step semantics, e.g., by induction on the number of iterations of the

step{construction procedure. Thus, (i) T ^ :R j= A, (ii) K j= T , since it is a model of D, and

(iii) K j= :R, whence K j= A. But this contradicts Prop. (2).

� \(=": Suppose M is a response model of D. We must prove D + M . To this end, consider the

set TM of all (parallel) transitions of D that are enabled in M . We show that

(1) TM is an admissible set of transitions in D and

(2) act(TM ) =M .

Note that it is clear that ? =2M , as M is a sequence model. Regarding Prop. (2), take any t 2 TM ,

say t = P ^ :N � B. Since trigger P ^ :N of t is valid in M and since M is a model of D, we

must have M j= B, whence B � M . Thus, act(TM ) � M . For the other inclusion, suppose there

exists some a 2 M which does not appear as an action of any transition in TM . We claim, then,

that we can extend M to an irredundant 2{sequence model K of D with K� =M . To obtain such

a K, take K =df (2; V ), where V (1) =df M and V (0) =df M n fag. Now, we show that K is a model

of D. Take any transition t of D, say P ^ :N � B. For establishing K j= t, we follow the semantic

de�nition of transitions (cf. Def. 3.1). Suppose i 2 f0; 1g, V (1) \ N = ;, and P � V (i). We have

to show that B � V (i). Since V (1) = M and M j= t, this follows immediately in case i = 1. So,

consider i = 0. The assumptions P � V (0) � V (1) and V (1) \ N = ; mean that t is enabled in

M = V (1), whence t 2 TM by construction. But then a 62 B, since all events in B are actions
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of TM and since a does by assumption not appear as an action in TM . Now, a =2 B �nally means

B = B n fag � M n fag = V (0). Hence, B � V (0), as desired. This completes the proof that K

is a model of t, for arbitrary t 2 trans(D), whence K j= D. Consequently, we have extended M to

an irredundant sequence model K of D of length 2, which contradicts the assumption that M is a

response model. Thus, M � act(TM ), and, putting our results together, M = act(TM ).

Regarding Prop. (1), it is not di�cult to prove that TM = enabled(D; ;; TM ). Let t 2 TM . We

claim that t is enabled by the set of actions of TM . Since, by Prop. (2), M is exactly the set of all

actions generated by TM and since t is enabled in M , transition t must be enabled by TM . Hence,

TM � enabled(D; ;; TM). Vice versa, let t be a transition of D enabled in TM , whence enabled

in M . Then, t 2 TM by de�nition. This proves the �rst part of admissibility. It remains to be

shown that there exists some t 2 TM n T such that t 2 enabled(D; ;; T ), for any T � TM . Let

T � TM be a proper subset of TM . Consider the set act(T ) of actions generated from T , which

satis�es act(T ) � act(TM ) =M by Prop. (2). We distinguish two cases. First, if act(T ) =M , then

by de�nition all transitions in TM are enabled by act(T ). Thus, since TM n T is non{empty, there

exists at least one transition in TM outside of T that is enabled by T . Second, assume act(T ) �M

is a proper subset. We then de�ne the irredundant stabilization sequence K =df (2; V ) as a model

extension of M , such that V (0) =df act(T ) and V (1) =df M . Since M = K� is a response model by

assumption, K cannot be a model of D. Thus, there exists some transition t, say P ^:N � A, in D

such that K 6j= t. By the semantic de�nition for transitions (cf. Def. 3.1) this means that there exists

an i 2 f0; 1g such that (i) P � V (i), (ii) V (1) \N = ;, and (iii) A 6� V (i). Since P � V (i) � V (1)

and V (1)\N = ;, transition t is enabled inM = V (1). Thus, t 2 TM . The remaining fact A 6� V (i)

implies t 62 T ; otherwise, if t 2 T then A � act(T ) = V (0), which contradicts A 6� V (i), since

V (0) � V (i), for any i. Hence, t 2 TM n T and t 2 enabled(D; ;; T ), as desired.

This completes the proof of Thm. 3.4.

Thm. 3.4 provides a simple model{theoretic characterization of step responses. For example, recall that

con�guration a=a forces Pnueli and Shalev's step construction procedure to fail. As shown before, the only

sequence model of a=a of length 1 and using only event a is (1; V2). But (1; V2) is not a response model since it

is the �nal world of 2{sequence model (2; V1). Since :a � a does not have any response model, transition a=a

can only fail in the empty environment. As another example, re{visit con�guration a=b k b=a, for which just

sequence (1;W2) is a response model. Thus, (a=b k b=a) + ; is the only response in the empty environment.

3.3. Full Abstraction for Parallel Con�gurations. Sequence models are not only elegant for char-

acterizing Pnueli and Shalev's semantics, but also lead to a fully{abstract semantics for parallel con�gurations

within parallel contexts.

Theorem 3.5 (Full Abstraction). For all C;D 2 PC, the following statements are equivalent:

1. SM (C) = SM (D) .

2. 2SM (C) = 2SM (D) .

3. (C k R) +E A if and only if (D k R) +E A, for all R 2 PC and E;A ��n � .

4. RM (C k R) = RM (D k R), for all R 2 PC .

This theorem states that we can completely determine the response behavior of a parallel con�guration

in arbitrary parallel contexts from its sequence models, or indeed its 1{ and 2{sequence models. Hence,

sequence models contain precisely the information needed to capture all possible interactions of a parallel
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con�guration within all potential environments. To prove Thm. 3.5, we �rst establish an auxiliary lemma

to show that the set of sequence models of at most length two contains the same information as the set of

sequence models of arbitrary length.

Lemma 3.6. Let C;D 2 PC, and let K be a stabilization sequence of arbitrary length such that K j= C,

K 6j= D, and K� j= D. Then, there exists a 2{sequence M with M j= C, M 6j= D, and M� = K�.

Proof. Let con�gurations C and D and n{sequenceK = (n;W ) be given as stated in the lemma. Clearly,

n � 2, as K = K� would be inconsistent with the assumptions K 6j= D and K� j= D. Now, let 0 � l � n� 2

be the largest l such that Kl 6j= D and Kl+1 j= D. Consider the 2{sequence model M =df (2; V ) where

V (0) =df W (l) and V (1) =df W (n � 1), i.e., M consists of the �rst and the last state of Kl. Obviously,

M� = K�. We will show thatM j= C butM 6j= D. We �rst prove that for every transition t, say P^:N � A,

Kl j= t if and only if M j= t : (3.1)

From this our claim follows because parallel con�gurations C and D are conjunctions of transitions and,

moreover, Kl j= C and Kl 6j= D. Since K� =W (n� 1) = V (1) =M� we immediately have

K� j= t if and only if M� j= t as well as M j= :N if and only if Kl j= :N :

By construction, W (l) = V (0), whence they force the same events, in particular for P :

P �W (l) if and only if P � V (0) as well as A �W (l) if and only if A � V (0) :

Taking all this together implies Statement (3.1).

On this basis, we are now able to establish Thm. 3.5.

Proof. [Theorem. 3.5] We begin with the equivalence of Statements (1) and (2). It is obvious that

SM (C) = SM (D) implies 2SM (C) = 2SM (D), as 1{ and 2{sequence models are just special sequence mod-

els. For the other direction, assume w.l.o.g. that SM (C) 6� SM (D). Hence, there must exist a stabilization

sequence K such that K j= C and K 6j= D. In the case K� 6j= D, we obtain 2SM (C) 6� 2SM (D) since

K� j= C and since K� is a classic structure. In the case K� j= D, we apply Lemma 3.6 which yields a

2{sequence model M satisfying M j= C and M 6j= D. Thus, 2SM (C) 6� 2SM (D), too. The equivalence

of Statements (3) and (4) is an easy consequence of Thm. 3.4. It remains to establish the equivalence of

Statements (2) and (4).

� \=)": Suppose that 2SM (C) = 2SM (D) and that R 2 PC. Then, A 2 RM (C k R) implies A j= C

and A j= R. Since A is a classic sequence model of C, it must be a sequence model of D and,

hence, of D k R. We claim that A actually is a response model of D k R. Suppose it was not.

Then, there would exist an irredundant sequence model K = (n; V ) of D k R satisfying n � 2

and K� = V (n � 1) = A. Since K is irredundant, it contains the 2{sequence M = (2;W ), where

W (0) =df V (n� 2) and W (1) =df V (n� 1). By the properties of intuitionistic truth (cf. Def. 3.1),

K j= D k R implies M j= D k R. Hence, there exists a 2{sequence model M with M� = A and

M j= D k R. Since 2SM (C) = 2SM (D), this implies M j= C k R, contradicting the assumption

that A is a response model of C k R.

� \(=": This proof direction needs slightly more work as it involves the construction of a discriminat-

ing context. We start o� with the assumption 2SM (C) 6= 2SM (D). W.l.o.g., letM be a stabilization

sequence of length one or two such that M j= C and M 6j= D. Moreover, de�ne A =df M
�. We now

distinguish two cases.

11



1. A 6j= D. Consider the context

R =df k fL(0)=A j (n;L) 2 2SM (C) and L� = Ag :

Observe that R is a parallel composition of �nitely many transitions as A is �nite. Moreover,

R is non{empty sinceM(0)=A is a transition in R. It is immediate that A cannot be a response

model of D k R because, by assumption, it is not even a model of D. We are done if we can

show that A 2 RM (C k R). Since every transition of R is of the form L(0)=A, we have A j= R.

Also, A j= C holds because M j= C and A = M�. Hence, A j= C k R. Moreover, it is not

di�cult to show that there cannot exist a 2{sequence K such that K� = A and K j= C k R.

If such K would exist, it would have to satisfy K(0) � A and K j= C. Hence, by construction,

transition K(0)=A is a parallel component of R. This means K 6j= R, since K 6j= K(0)=A, which

follows from K(0) � K(0) and A 6� K(0). But K 6j= R would be a contradiction to K j= C k R.

This shows that there exists no proper weakening K of A that is still a model of C k R. Thus,

A is a response model of C k R.

2. A j= D. Since M� = A and M 6j= D, this assumption implies that M is irredundant, i.e., it is

a 2{sequence with M(0) � M(1). In this case, we construct a con�guration R such that A is

a response model of D k R but not of C k R. Consider an arbitrary stabilization sequence K.

We de�ne transitions tMK as follows; recall that M is a 2{sequence, whence M(1) =M� = A:

tMK =df

(
K(0)=M(0) if K(0) �M(0)

K(0)=M(1) otherwise.

Again the sets K(0), M(0), and M(1) are �nite. These transitions have the property that

M j= tMK , for all K, and K 6j= tMK , for all K such that K(0) 6= M(0), K(0) 6= M(1), and

K� =M(1) = A. The context con�guration R is now formed as

R =df k ft
M
L j L 2 2SM (D) and L� = Ag :

As before, there is only a �nite number of L with L� = A, as A is �nite. It follows from

the above that M j= R and also A j= R. Now we compare the response models of C k R

and D k R. Obviously, A 62 RM (C k R), since M is irredundant with M� = A, and also

M j= C and M j= R, whence M j= C k R. We claim that A 2 RM (D k R). First of all,

A j= D k R. Now suppose there exists an irredundant stabilization sequence K such that

K� = A and K j= D k R. We may assume that K has length 2 according to Prop. 3.2. By

construction, R then contains transition tMK , whence K j= tMK . However, this is impossible

unless K(0) = M(0) or K(0) = M(1). If, however, K(0) = M(0), then K 6j= D. This follows

from K� = M(1) = A and the assumption M 6j= D, as one can show without di�culties. So,

we must have K(0) = M(1). Since K� = A = M(1) and since K is irredundant, we conclude

K = A. Thus, there cannot exist a non{trivial weakening of A that is a model of D k R. Hence,

A 2 RM (D k R), as desired.

This completes the proof of Thm. 3.5.

3.4. Characterization of Sequence Models. Thm. 3.5 does not mean that every set of stabilization

sequences can be obtained from a parallel con�guration. In fact, from the model theory of intuitionistic logic it

is known that in order to specify arbitrary linear sequences, nested implications are needed [19]. Statecharts
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con�gurations, however, only use �rst{order implications and negations. Therefore, we may expect the

semantics of con�gurations to satisfy additional structural properties due to the limited expressiveness of

con�guration formulas. In fact, it turns out that the sets SM (C) are closed under sub{sequences, re�nement,

and sequential composition. These notions are de�ned as follows:

� The m{sequence M = (m;V ) is a sub{sequence of the n{sequence N = (n;W ), written M � N , if

there exists a mapping f : [0; : : : ;m� 1]! [0; : : : ; n� 1] such that V (i) =W (f(i)), for all i < m,

and V (m � 1) = W (n � 1). Note that f must be strictly monotonic since V and W are strictly

increasing. In other words, M � N holds if M is obtained from N by dropping some states while

preserving the �nal state.

� The k{sequence K = (k; U) is a re�nement of the m{sequence M = (m;V ) and the n{sequence

N = (n;W ), written K � M u N , if there exist mappings fM : [0; : : : ; k � 1] ! [0; : : : ;m � 1]

and fN : [0; : : : ; k � 1] ! [0; : : : ; n � 1] such that U(k � 1) = V (m � 1) = W (n � 1) and U(i) =

V (fM (i))\W (fN (i)), for i < k. Intuitively, K �M uN holds if M , N , and K have the same �nal

state and if every state of K arises from the intersection of a state from M with one from N .

� Finally, the sequential composition of M = (m;V ) and N = (n;W ), such that V (m� 1) �W (0), is

the sequence M ; N = (m+ n;U) where U(i) = V (i), for i < m, and U(i) =W (i�m), otherwise.

One can easily verify that the set SM (C), for every parallel con�guration C 2 PC, is closed under sub{

sequences, re�nement, and sequential composition. In the �nite case the converse is also valid, i.e., every �nite

set of stabilization sequences which is closed under sub{sequences, re�nement, and sequential composition is

the set of sequence models of some parallel con�guration, relative to some �xed �nite set of events. However,

instead of working with sets of sequence models, we will present an equivalent characterization that is much

more compact and that employs simple �nite lattice structures which we refer to as behaviors.

Definition 3.7 (Behavior). A behavior C is a pair hF; Ii, where F � 2�nf?g and I is a function that

maps every B 2 F to a set I(B) � 2B of subsets of B, such that

1. I is monotonic, i.e., B1 � B2 implies I(B1) � I(B2),

2. I(B) is closed under intersection, i.e., B1; B2 2 I(B) implies B1 \ B2 2 I(B), and

3. B 2 I(B).

If F = fAg, for some A ��n �, then C is called A{bounded, or simply bounded if A is understood.

Moreover, C is directed if F 6= ; and 8B1; B2 2 F 9B 2 F: B1 � B and B2 � B.

Intuitively speaking, the �rst component F of a behavior C = hF; Ii captures the possible �nal responses

of C. For every such �nal response B 2 F , the event sets I(B) � 2B represent the states of all stabilization

sequences of C that end in B. Any strictly increasing sequence that moves only through states I(B) and

ends in B is considered a stabilization sequence of the behavior. In case I(B) = fBg set B is an autonomous

response of C. This interpretation is con�rmed below in Lemma 3.9 for those behaviors that are obtained

from parallel Statecharts con�gurations.

It is not di�cult to show that the pairs of initial and �nal states occurring together in the sequence models

of C 2 PC induce a behavior. More precisely, the induced behavior Beh(C) of C is the pair hF (C); I(C)i

which is de�ned as follows:

F (C) =df fE � � j 9(n; V ) 2 SM (C): V (n� 1) = Eg and

I(C)(B) =df fE � B j 9(n; V ) 2 SM (C): V (0) = E and V (n� 1) = Bg :
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From the property of sub{sequence closure we know that the initial and �nal states of any sequence model

of C form a 2{sequence model of C. Thus, we can also de�ne behavior hF (C); I(C)i directly from 2SM (C):

X 2 F (C) if and only if X 2 2SM (C) ; and

X 2 I(C)(Y ) if and only if (X;Y ) 2 2SM (C) ;

where we identify a 1{sequence (1; V ) with the subset V (0) and a 2{sequence (2; V ) with the pair (V (0); V (1)).

From our construction it is clear that Beh(C) is uniquely determined by SM (C) or, in fact, by 2SM (C).

Lemma 3.8. For C 2 PC, Beh(C) is a behavior and, if ? does not occur in C, then Beh(C) is directed.

Proof. Observe that, for all stabilization sequences (n; V ), we have ? 62 V (n� 1) by de�nition. Hence,

F (C) � 2�nf?g.

First, we show that I(C) is monotonic. Let B1; B2 2 F (C) such that B1 � B2, and let E 2 I(C)(B1). If

B1 = B2 nothing needs to be shown, i.e., we have E 2 I(C)(B2) trivially. So, suppose B1 � B2. This means

that for some (n; V ) 2 SM (C), both V (0) = E and V (n � 1) = B1 hold. We claim that the stabilization

sequence (n+1;W ) de�ned by W (i) =df V (i), for 0 � i < n, and W (n) =df B2 is a model of C, which then

entails E 2 I(C)(B2). To prove (n+1;W ) 2 SM (C) we proceed by contradiction. Assume that there exists

a transition t, say P ^:N � D, of C such that (n+1;W ) 6j= t. This implies that there must exist some i � n

such that P �W (i), N \W (n) = ;, and D 6�W (i). Since B2 2 F (C), set B2 is the �nal state of a sequence

model of C. Thus, by the properties of intuitionistic truth, the singleton sequence B2 must be a model of C,

too. This means that the �nal state W (n) = B2 of W must satisfy t, i.e., D � W (n). Hence, i < n and

W (i) = V (i). Now, N \ B2 = N \W (n) = ; and B1 � B2 implies N \ V (n� 1) = N \ B1 = ;. From this

we conclude (n; V ) 6j= t which contradicts assumption (n; V ) 2 SM (C). Hence, we have (n+1;W ) 2 SM (C)

and, as a consequence, W (0) = V (0) = E and W (n) = B2, i.e., E 2 I(C)(B2). This completes the proof

that I(C) is monotonic.

Second, we verify that I(C)(B) is intersection closed, for all B 2 F (C). Let E1; E2 2 I(C)(B) and

sequences (n1; V1) 2 SM (C) and (n2; V2) 2 SM (C) such that V1(n1 � 1) = V2(n2 � 1) = B, E1 = V1(0),

and E2 = V2(0). Consider the 2{sequence (2; U), where U(0) =df E1 \ E2 and U(1) =df B. We claim that

(2; U) 2 SM (C). Suppose, by way of contradiction, that t is a transition of C, say P ^ :N � D, for which

(2; U) 6j= t. Since B = U(1) and B 2 F (C), i.e., B is a singleton model of C, we know that U(1) j= t.

Hence, any violation of t by (2; U) can only occur if P � U(0), N \ U(1) = N \ B = ;, and D 6� U(0).

Since U(0) = E1 \ E2 it follows that P � E1 and P � E2. Furthermore, D 6� U(0) implies D 6� Ei, for

i = 1 or i = 2. In either case, the fact that N \ B = ;, as B is the �nal state of (ni; Vi) for both i 2 f1; 2g,

implies (ni; Vi) 6j= t which contradicts our assumption. Thus, (2; U) 2 SM (C), as desired. By construction

we have U(0) = E1 \E2 and U(1) = B, whence E1 \E2 2 I(C)(B). This completes the proof that I(C)(B)

is intersection closed.

Finally, we show that Beh(C) is directed if failure event ? does not occur in C. Let E1; E2 2 F (C), i.e.,

V1(n1 � 1) = E1 and V2(n2 � 1) = E2, for some sequence models (n1; V1); (n2; V2) 2 SM (C). Now, consider

the 1{sequence (1; V ), where V (0) =df E1 [ E2 [ act(triggered(C;E1 [ E2)); i:e:; E1 � V (0) and E2 � V (0).

Note that V (0) � � n f?g and that ? is by assumption not included in any action. Hence, (1; V ) is a

stabilization sequence. Moreover, (1; V ) is clearly a model of each transition of C and, thus, of C. This

implies (1; V ) 2 SM (C) and, further, V (0) 2 F (C). It can also be seen that act(trans(C)) � � n f?g is a

classical model of C, whence F 6= ;. Thus, Beh(C) is directed, which �nishes the proof.
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The relationship between Beh(C) and SM (C) is further clari�ed by the following lemma which illustrates

how Beh(C) may be uniquely determined from SM (C).

Lemma 3.9. Let C 2 PC be a parallel con�guration.

1. For every stabilization sequence (n; V ), we have (n; V ) 2 SM (C) if and only if V (n � 1) 2 F (C)

and V (i) 2 I(C)(V (n� 1)), for all i < n.

2. B 2 RM (C) if and only if B 2 F (C) and I(C)(B) = fBg.

According to Part (1), a stabilization sequence M is an element of SM (C) if and only if it is a sequence of

states from I(C)(B) such that B 2 F (C) and B is the �nal state ofM . This implies that not only is Beh(C)

uniquely determined by SM (C) but also, vice versa, SM (C) is uniquely determined by Beh(C).

Proof. [Lemma 3.9] Part (2) follows immediately from the de�nition of Beh(C) and RM (C). In addition,

direction \=)" of Part (1) is trivial as it follows from the de�nition of Beh(C). To obtain the reverse

direction of Part (1), we assume that V (n � 1) 2 F (C) and V (i) 2 I(C)(V (n � 1)), for all i < n. Now,

suppose (n; V ) 62 SM (C), i.e., there exists a transition t, say P ^ :N � D, of C satisfying (n; V ) 6j= t. Let

i < n be some index with P � V (i), N \ V (n � 1) = ;, and D 6� V (i). Note that such an i must exist

since (n; V ) refutes t. From the assumption V (i) 2 I(C)(V (n� 1)) we infer the existence of a stabilization

sequence (m;W ) 2 SM (C) with W (0) = V (i) and W (m � 1) = V (n � 1). But this implies P � W (0),

N \W (m� 1) = ;, and D 6�W (0), which means (m;W ) 6j= t in contradiction to (m;W ) 2 SM (C). Hence,

(n; V ) 2 SM (C), as desired.

As a consequence of Lemma 3.9, we obtain that Beh(C) contains the same semantic information as SM (C).

Theorem 3.10 (Characterization). 8C;D 2 PC: Beh(C) = Beh(D) if and only if SM (C) = SM (D).

Proof. Direction \(=" follows immediately from the fact that the behavior of a con�guration is derived

from its sequence models. The other direction \=)" is an implication of Lemma 3.9(1).

In conjunction with Thm. 3.5, we conclude that equivalence in arbitrary parallel contexts can equally well

be decided by behaviors: Beh(C) = Beh(D) if and only if (C k R) +E A is equivalent to (D k R) +E A,

for all R 2 PC and E;A ��n �. The advantage of Beh(C) over SM (C) is that the former provides an

irredundant representation of parallel con�gurations. Moreover, every �nite behavior can be represented

exactly. We call a behavior C = hF; Ii A-�nite, for A ��n �, if C is uniquely determined by the subsets of A,

i.e., B 2 F if and only if B \ A 2 F , and X 2 I(B) if and only if X \ A 2 I(B \ A). If C is A{�nite, then

the A{restriction CjA =df hF jA; I jAi, such that F jA =df F \ 2A and I jA(B) = I(B), is �nite and contains

complete information about C. For representation purposes it is convenient to confuse an A{�nite behavior C

with its �nite restriction CjA. In a similar vein, we identify an A{bounded behavior D = hfAg; Ii with the

A{�nite behavior generated by it, i.e., the uniquely de�ned behavior C such that CjA = D. We frequently

use these implicit restrictions and extensions in our examples without further mention. The exactness of

behaviors as models of con�gurations is now an implication of the following theorem.

Theorem 3.11 (Completeness). C is an A{�nite (directed) behavior if and only if there exists a con-

�guration C 2 PC over events A (not using failure event ?) such that C = Beh(C).

Proof. Direction \(=" of Thm. 3.11 is essentially the statement of Lemma 3.8. A{�niteness is a trivial

consequence of the fact that the semantics of a con�guration only depends on the events mentioned in it.

We may thus focus on direction \=)".
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Let C = hF; Ii be an A{�nite behavior. We are going to construct a con�guration C over events A

such that Beh(C) = C. Since Beh(C) = hF (C); I(C)i is also A{�nite, we can prove Beh(C) = C simply by

establishing that their A{restrictions are identical. Thus, we only need to consider subsets of A, i.e., prove

F \ 2A = F (C) \ 2A and then I(Y ) = I(C)(Y ) under the additional assumption that Y � A. Moreover,

depending on whether C is directed or not, we can make further assumptions about A. First, if C is non-

directed, then we assume that ? 2 A. This is permitted since A{�niteness is not a�ected by adding ? to A.

Alternatively, if C is directed, then we may assume A 2 F . Since F 6= ;, the set F \ 2A must be non{empty,

too, and by directedness must contain a greatest element A� 2 F \ 2A. Then, C is also A�{�nite. Thus, if

A 62 F , we may use A� instead of A.

Our construction of con�guration C uses the following uniform construction of transitions. We associate

with every E � B � A, such that B 2 F , an event set (E;B)� � � de�ned by

(E;B)� =df

\
fE0 2 I(B) j E � E0 � Bg :

Note that this intersection is always non{empty since E � B � B and B 2 I(B), by Prop. (3) of behaviors

(cf. Def. 3.7). Intuitively, (E;B)� is the \best upper approximation" of stabilization sequence (2; V ), where

V (0) =df E and V (1) =df B, in C. By construction and by Prop. (2) of behaviors,

E � (E;B)� � B as well as (E;B)� 2 I(B) :

The left{hand inclusion E � (E;B)� becomes an equality (E;B)� = E precisely if E 2 I(B). The right{

hand inclusion (E;B)� � B is an equality (E;B)� = B if and only if I(B) = fBg. Now, we de�ne a

con�guration C 2 PC from C as follows:

C =df k f(E [ (A nB))=(E;B)� j E � B � A and B 2 Fg

k f(B [ (A nB))=(A nB) j B � A and B 62 Fg :

This is a �nite con�guration since all sets involved are �nite and subsets of A. Observe that if A does not

contain ?, then con�guration C does not use ? either. Hence, if C is directed, then C is ?{free, since by

our assumptions A 2 F holds which implies ? =2 A. On the other hand, if C is non{directed, our assumption

? 2 A has the e�ect that con�guration C actually uses event ? in its transitions.

The claim now is that Beh(C) = C, i.e., hF (C); I(C)i = hF; Ii. As discussed above, by A{�niteness,

we can restrict ourselves to subsets of A. Moreover, whenever stabilization sequences occur, it su�ces by

Lemma 3.6 to consider those of at most length two. For convenience, a sequence (1; V ) is identi�ed with

the redundant sequence (2;W ), where W (0) =df W (1) =df V (0). For stabilization sequences (2; V ), we also

write (V (0); V (1)).

� We �rst show F (C)\ 2A = F \ 2A and start with F \ 2A � F (C)\ 2A. Suppose Y � A is such that

Y 62 F (C), i.e., there exists no X � Y with (X;Y ) 2 2SM (C). In particular, (Y; Y ) 62 2SM (C).

Hence, there is a transition t in C which is falsi�ed by (Y; Y ). If t = (B[ (A nB))=(AnB), for some

B � A and B 62 F , we must have Y = B, whence Y 62 F . In case t = (E [ (A nB))=(E;B)�, for

some E � B � A and B 2 F , we obtain E � Y and Y \ (AnB) = ; and (E;B)� 6� Y . The second

property Y \ (A n B) = ; is equivalent to Y � B. Thus, together with the �rst property, we have

E � Y � B. Now, suppose Y 2 F . By Prop. (1) of behaviors (monotonicity), I(Y ) � I(B). This

implies (E;B)� � (E; Y )� � Y which would contradict the third property (E;B)� 6� Y . Hence,

Y 62 F , as desired. This proves F \ 2A � F (C) \ 2A.
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For the other inclusion F (C)\2A � F \2A, suppose Y 2 F (C) and Y � A. Thus, (Y; Y ) 2 2SM (C).

If Y 62 F , then C contains transition t = (Y [ (A n Y )=(AnY ). But, as one checks without di�culty,

(Y; Y ) 6j= t which contradicts (Y; Y ) 2 2SM (C). Since Y =2 F , we either have Y � A, or Y = A and

? 2 A by our assumption. Hence, Y 2 F which establishes F \ 2A � F (C) \ 2A.

� We show I(C)(Y ) = I(Y ), for all Y 2 F \ 2A = F (C)\ 2A. Fix any Y 2 F \ 2A. We �rst prove the

inclusion I(Y ) � I(C)(Y ). To this end, let X 2 I(Y ) be given. We claim that (X;Y ) 2 2SM (C)

which implies X 2 I(C)(Y ). In order to show that (X;Y ) is a 2{sequence model of C it will be

convenient to use indices to refer to the states X and Y of this sequence and to use the notation

(V (0); V (1)) =df (X;Y ). Now, consider any of the transitions t = (E [ (A nB))=(E;B)�, where

E � B � A and B 2 F . We check that (V (0); V (1)) j= t following the de�nition of our semantics.

If V (1) \ (A n B) 6= ; or, for no i 2 f1; 2g, E � V (i), then we are done immediately. So assume

V (1) \ (A n B) = ; which is the same as V (1) � B, and choose any i 2 f0; 1g such that E � V (i).

Hence, we have E � V (i) � V (1) � B. By Prop. (1) of behaviors, Y = V (1) � B implies

I(Y ) � I(B). Furthermore, we have V (i) 2 I(Y ). In case i = 0, this follows from Prop. (3) of

behaviors; in case i = 1, this is the assumption X 2 I(Y ). But I(Y ) � I(B) and V (i) 2 I(Y ) implies

V (i) 2 I(B). Hence, V (i) is one of the E0 in the intersection (E;B)� =
T
fE0 2 I(B) jE � E0 � Bg,

from which we conclude (E;B)� � V (i). This establishes (V (0); V (1)) j= t. Now consider any of the

other transitions t = (B[(A nB))=(AnB), for B � A with B 62 F . To show (V (0); V (1)) j= t, again,

we just need to consider the case V (1) \ (A nB) = ; or, equivalently, V (1) � B, and any i 2 f0; 1g

such that B � V (i). Then, we have B � V (i) � V (1) � B. This yields Y = V (1) = B which is a

contradiction to the assumptions Y 2 F and B 62 F by the construction of t. Hence, the proof of

(V (0); V (1)) j= t is complete. We are thus �nished showing X 2 I(C)(Y ), whence I(Y ) � I(C)(Y ).

For the other inclusion, I(C)(Y ) � I(Y ), let X � A be given such that X 62 I(Y ). We establish

(X;Y ) 6j= (X[(A n Y ))=(X;Y )� which is a transition of C, as Y 2 F by assumption. But this follows

from the fact that X � (X;Y )�, because X 62 I(Y ), and (A n Y ) \ Y = ;. Thus, (X;Y ) 62 2SM (C),

whence X 62 I(C)(Y ).

This completes the proof of Thm. 3.11.

fa; b; cg

fbg fcgfag

fa; bg

;

Fig. 3.1. fa; b; cg{

bounded behavior

Summarizing, behaviors Beh(C), for parallel con�gurations C, yield a very simple

model representation of SM (C). For any given B 2 F (C), the set I(C)(B) is a

�nite (\;�) semi{lattice with maximal element B. For every B0 � B, the semi{

lattice I(C)(B) is a full sub{lattice of I(C)(B0). As a simple example, consider the

con�guration C =df bc=a k ac=b k a=a k b=b k c=c over events A = fa; b; cg.

Its behavior Beh(C) is A{�nite and, when restricted to the relevant events A, may

be depicted as in Fig. 3.1. Since F (C) = fAg is a singleton set we only have one

(\;�) semi{lattice I(C)(A). Moreover, SM (C) is precisely the set of sequences whose

worldwise intersection with A are paths in the diagram ending in top element A.

4. Fully{abstract Semantics. We have seen in the previous section that the behavior of a parallel

con�guration P in all parallel contexts is captured by its set of sequence models SM (P ) or, equivalently,

its behavior Beh(P ). This yields a denotational semantics in which parallel composition is intersection, i.e.,

SM (P1 k P2) = SM (P1) \ SM (P2). Similarly, Beh(P1 k P2) = Beh(P1) \ Beh(P2), where the intersection is

taken pointwise. The next section shows how this semantics can easily be extended to work with arbitrary

contexts, thereby completely characterizing the semantics of PC. However, the question, which still needs to
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be answered, is how to capture the semantics of the choice operator +. In view of the fact that k is logical

conjunction ^ in the intuitionistic logic of stabilization sequences, it would be natural to expect that +

corresponds to logical disjunction _ over sequence models. Unfortunately, the choice operator + is not a

disjunction on sequence models but on behaviors, i.e., on sets of sequence models.

As a simple counterexample, for why logical disjunction on sequence models does not su�ce, consider

transitions a=b and b=a. Moreover, assume that the semantics of a=b + b=a would be completely described

by formula (a � b) _ (b � a), when interpreted over stabilization sequences, i.e., SM ((a � b) _ (b � a)) =

SM (a � b) [ SM (b � a). Now, as one can show, we have K j= (a � b) or K j= (b � a), for every

stabilization sequence K. Thus, SM ((a � b) _ (b � a)) contains all stabilization sequences, whence the

formula (a � b) _ (b � a) is a logical tautology. In terms of sequence models alone, a=b + b=a would be

equivalent to the empty con�guration 0. But obviously both con�gurations have di�erent response behavior,

as, e.g., (a=b + b=a) +fag fa; bg but only 0 +fag fag. Also, the obvious idea of replacing linear stabilization

sequences by arbitrary intuitionistic Kripke models does not work. We will see later that a=b + b=a actually

is step congruent to a=b k b=a. Since the formulas (a � b) _ (b � a) and (a � b) ^ (b � a) are not

intuitionistically equivalent, we cannot read + as disjunction on arbitrary Kripke models. It does not appear

sensible to try and �nd a an intermediate class of intuitionistic Kripke models such that the behavior of sum

con�gurations P1 + P2 can be characterized by the disjunctive formula P1_P2. Such a semantics would have

to use a modi�ed interpretation of transition implication to account for di�erent enabling properties. The

next section shows that we need to distinguish transition a=a, which is triggered by a, from transition b=b,

which is triggered by b. The naive logical interpretation would identify both transitions with true.

Instead of trying to read operator + as logical disjunction, we will use semantic{preserving transfor-

mations to eliminate + in favor of parallel composition, whose semantics we already know. There are two

methods for achieving this. The naive method is to encode + in terms of k using additional distinguished

events to achieve mutual exclusion between the transitions on di�erent sides of the choice operator. This

will be discussed in App. C. The other method is to use an expansion law to distribute operator + over

operator k and to transform a con�guration C 2 C into a standard form
P

i Ci, where all Ci 2 PC are

parallel con�gurations. The semantics of C is then uniquely determined from the semantics of all Ci. The

second method will be our main focus in this report since it is more algebraic than the �rst one and also

does not depend on the use of distinguished events.

4.1. Reduction to Parallel Contexts. For extending the full{abstraction result to arbitrary contexts,

one must address the following compositionality problem for + which already manifests itself in Pnueli and

Shalev's semantics. Consider con�gurations C =df a=b and D =df a=b k a=a which have the same responses

in all parallel contexts, i.e., Beh(C) = Beh(D). However, in the choice context �[x] = (�=e + x) k �=a, we

obtain �[D] + fag but �[C] 6+ fag. This context is able to detect that D is enabled by environment �=a

while C is not. Hence, to be fully compositional one has to take into account whether there exists a

transition in C that is triggered for a set A of events. To store the desired information, we use the triggering

indicator �(C;A) 2 B =df f�; ttg de�ned by �(C;A) =df tt, if triggered(C;A) 6= ;, and �(C;A) =df �,

otherwise. When C + A, let us call response A active, if �(C;A) = tt, and passive, otherwise. This

distinction is all we need to reduce step congruence to parallel contexts. Indeed, two con�gurations are

step{congruent if and only if they have the same active and passive step responses in all parallel contexts.

Proposition 4.1. Let C;D 2 C. Then, C ' D if and only if 8P 2 PC; E;A ��n �; b 2 B . (C k P +E A

and �(C;A) = b) if and only if (D k P +E A and �(D;A) = b).
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This proposition is a corollary to the more general Thm. 4.13 presented in Sec. 4.4. Prop. 4.1 now suggests

the following re�nement of the naive fully{abstract semantics [[�]]0. For every C 2 C, we de�ne

[[C]]b1 =df fhA;P i j (C k P ) + A; �(C;A) = b; P 2 PCg ;

where b 2 B . We may view [[C]]tt1 as the collection of active and [[C]]�1 as the collection of passive responses

for C in parallel contexts. From Prop. 4.1, then, we obtain the following result.

Proposition 4.2. Let C;D 2 C. Then, C ' D if and only if [[C]]tt1 = [[D]]tt1 and [[C]]�1 = [[D]]�1 .

4.2. Reduction to Parallel Con�gurations. The next step is to eliminate the choice operator from

the con�gurations themselves and to show that the response behavior of every con�guration can be deter-

mined from that of its parallel components. As mentioned earlier, this will be achieved by transforming

con�gurations into a standard form in which the choice operator is the outermost operator.

To begin with the development of a standard form, please observe that the naive distributivity law

(t1 + t2) k t3 ' (t1 k t3) + (t2 k t3), with the two occurrences of t3 on the right{hand side suitably renamed,

does in general not hold. As a counterexample, consider transitions ti =df aibi=ci, for 1 � i � 3, and assume

that all events are mutually distinct. Then, in a context in which transition t2 is enabled but not transition t1,

transition t3 in C =df (t1 + t2) k t3 is forced to interact with t2, while in D =df (t1 k t3) + (t2 k t3) it may

run by itself in the summand t1 k t3. For example, if E = fa2; a3g then D +E fa2; a3; c3g, but the only A

with c3 2 A and C +E A is A = fa2; a3; c2; c3g. The same applies if the context enables t1 but not t2. The

naive distributivity law, however, can be patched as

(t1 + t2) k t3 ' t1 k D1(t3) + t2 k D2(t3) ;

where con�gurationsDi(t3), for i 2 f1; 2g, are suitable weakenings of t3 that disable transition t3, whenever ti

is disabled but t3�i is enabled. There are two ways for de�ning such con�gurations.

The most elegant solution is to exploit the failure event ?. In the example, we could de�ne Di(t3) =df

Di k t3, for i 2 f1; 2g, where

Di =df aia3�ib3�i=? k bia3�ib3�i=? :

The \watchdog" con�guration Di is enabled exactly if ti is not enabled and t3�i is, in which case it produces

a failure. Formally, for all parallel contexts P , con�guration Di has the property (Di k P ) + A if and only

if (i) P + A and (ii) A triggers ti or does not trigger t3�i. Thus, Di does not change any of the responses

of P , it only prohibits some of them. We will see below how this can be generalized, namely how one

may construct, for any given con�gurations C1 and C2, a watchdog con�guration watch(C1; C2) such that

(D k watch(C1; C2)) + A if and only if D + A and triggered(C1; A) 6= ; or triggered(C2; A) = ;.

The second method of patching the naive distributivity law is to modify the parallel context itself

and to strengthen the triggers of all its transitions. In our example, Di(t3) would modify transition t3

rather than composing a watchdog parallel to it. Appropriate weakenings Di(t3), for i 2 f1; 2g, satisfying

C ' t1 k D1(t3) + t2 k D2(t3) are

Di(t3) =df aibia3b3=c3 k a3�ia3b3=c3 k b3�ia3b3=c3 :

Now, con�guration Di(t3) has the same action as t3, but is only enabled when t3 is and when ti is enabled

or t3�i is disabled. As intuitionistic formula, Di(t3) is equivalent to ((ai^:bi)_:a3�i_b3�i) � t3. This is the
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formal weakening of t3 by the extra precondition (ai^:bi)_:a3�i_b3�i which captures exactly the situations

in which ti is enabled or t3�i is disabled. This second approach, which does not depend of the use of explicit ?

events in the actions of transitions, can be generalized to arbitrary con�gurations. Since this method is less

local and more tedious, we do not consider it further. Both methods are essentially equivalent in the sense that

the �rst version of Di(t3), i.e., watch(ti; t3�i) k t3 = aia3�ib3�i=? k bia3�ib3�i=? k t3, is step congruent

to the second version, i.e., ((ai ^ :bi) _ :a3�i _ b3�i) � t3 = aibia3b3=c3 k a3�ia3b3=c3 k b3�ia3b3=c3, as

can be derived from our intuitionistic semantics. Hence, the use of the failure event ? in the watchdog

con�gurations is inessential.

To formally construct watchdogs in a �nitary fashion, we need to refer to the events that occur in a

con�guration. For every con�guration C, let �(C) denote the set of all events that syntactically occur in C.

Then, we de�ne watch(C1; C2) 2 PC to be the parallel con�guration

k fA;E nA=? j A � E = �(C1) [ �(C2); �(C1; A) = � ; and �(C2; A) = ttg :

The crucial semantic property of watchdogs is now stated in the following proposition.

Proposition 4.3. Let C1; C2; D 2 C. Then, (D k watch(C1; C2)) + A if and only if D + A and

triggered(C1; A) 6= ; or triggered(C2; A) = ;.

Proof. In the following, let E =df �(C) [ �(D). We begin with direction \=)". Since all transitions

of watch(C1; C2) have event ? as their only action event, it follows from (D k watch(C1; C2)) + A that none

of the watchdog transitions can be enabled. This implies that response A must come from con�guration D

alone, i.e., D + A. In particular, transition A;E nA=? cannot be included in watch(C1; C2); otherwise, it

would be enabled by response A � E. But this implies �(C1; A) 6= � or �(C2; A) 6= tt, or, equivalently,

triggered(C1; A) 6= ; or triggered(C2; A) = ;.

For proving direction \(=", let us assume (1)D + A and (2) triggered(C1; A) 6= ; or triggered(C2; A) = ;.

Now, given any event set A0 � E satisfying �(C1; A
0) = � and �(C2; A

0) = tt, Assumption (2) implies A 6= A0.

This means that none of the transitions A0; E nA0=? of watch(C1; C2) is enabled. Therefore, Assumption (1)

implies (D k watch(C1; C2)) + A by the de�nition of step responses.

The watchdogs admit the following simple expansion law whose proof, which can be found in App. B, is a

direct application of Prop. 4.1.

Lemma 4.4 (Expansion). Let P;Q;R 2 C. Then, (P + Q) k R ' (watch(P;Q) k P k R) +

(watch(Q;P ) k Q k R).

Repeated application of Lemma 4.4 (expansion) can be used to systematically push all occurrences of choice

operator + to the outside of the con�gurationC under consideration, until + becomes the outermost operator.

We can think of this transformation of C as a static analysis which reveals the top{level choice structure of C.

The general expansion algorithm, which is omitted here, associates with every C 2 C a set ind(C) of indices

and, for every i 2 ind(C), a parallel con�guration Ci 2 PC. The con�gurations Ci essentially correspond to

the maximal consistent subsets of trans(C), patched up with appropriate watchdog con�gurations.

Lemma 4.5 (Standard Form). Let C 2 C. Then, there exists a �nite index set ind(C) and parallel

con�gurations Ci 2 PC, for i 2 ind(C), such that C '
P

i2ind(C) Ci.

Hence, [[C]]b1 = [[
P

i2ind(C)Ci]]
b
1 by Prop. 4.2, for b 2 B . Moreover, since an active response of a sum must be

an active response of one of its summands and since a passive response of a sum always is a passive response

20



of all of its summands, we have

[[
X

i2ind(C)

Ci]]
tt
1 =

[
i2ind(C)

[[Ci]]
tt
1 and [[

X
i2ind(C)

Ci]]
�
1 =

\
i2ind(C)

[[Ci]]
�
1 :

Thus, we obtain the following proposition which states the desired reduction of the full{abstraction problem

to parallel con�gurations within parallel contexts.

Proposition 4.6. Let C;D 2 C. Then, C ' D if and only if

[
i2ind(C)

[[Ci]]
tt
1 =

[
j2ind(D)

[[Dj ]]
tt
1 and

\
i2ind(C)

[[Ci]]
�
1 =

\
j2ind(D)

[[Dj ]]
�
1 :

Proof. We present the proof for two indices only, i.e., we assume C ' C1 + C2 and D ' D1 + D2,

where Ci; Dj 2 PC are parallel con�gurations. The general case is handled in the same way, noting that +

is associative. Observe that the statement of Prop. 4.6 reduces to the congruence condition [[C]]b1 = [[D]]b1
expressed in Prop. 4.2, in case both con�gurations have only one index. In what follows, �(C;A) 2 B denotes

again the enabling indicator, so that �(C;A) = �, if triggered(C;A) = ;, and �(C;A) = tt, otherwise.

� \(=": We assume

[[C1]]
tt
1 [ [[C2]]

tt
1 = [[D1]]

tt
1 [ [[D2]]

tt
1 and (4.1)

[[C1]]
�
1 \ [[C2]]

�
1 = [[D1]]

�
1 \ [[D2]]

�
1 : (4.2)

We must show, by Prop. 4.1, that for every parallel con�guration P 2 PC and every E;A ��n �,

((C1 + C2) k P ) +E A implies ((D1 + D2) k P ) +E A and �(D1 + D2; A) = �(C1 + C2; A) (4.3)

and vice versa, with the roles of Ci and Di interchanged. We may assume that E = ; since any E is

already quanti�ed implicitly by P . Moreover, it su�ces to prove the implication in Statement (4.3)

because of symmetry. Suppose that ((C1 + C2) k P ) + A. By Lemma 4.9 we have to consider the

following two cases:

1. There exists some index i 2 f1; 2g such that (Ci k P ) + A and �(Ci; A) = tt .

2. For both indices i 2 f1; 2g, it is true that �(Ci; A) = � and (Ci k P ) + A .

In Case (1), by de�nition, hA;P i 2 [[Ci]]
tt
1 . From Equation (4.1) it follows that there exists some

j 2 f1; 2g such that hA;P i 2 [[Dj ]]
tt
1 . But this yields ((D1 + D2) k P ) + A and �(Dj ; A) = tt

when reading Lemma 4.9 backwards. Hence, �(D1 + D2; A) = tt = �(C1 + C2; A) which proves

Statement (4.3) in Case (1). Regarding Case (2), hA;P i 2 [[Ci]]
�
1 holds, whence by Equation (4.2),

hA;P i 2 [[Dj ]]
�
1 , for both j 2 f1; 2g. This means that (D1 k P ) + A and (D2 k P ) + A, as well as

�(D1; A) = � = �(D2; A). So, by employing Lemma 4.9 backwards, we obtain ((D1 + D2) k P ) + A

and �(D1 + D2; A) = � = �(C1 + C2; A), as desired.

� \=)": For this direction, let us assume C ' D, i.e., C1 + C2 ' D1 + D2. Let hA;P i 2 [[C1]]
tt
1 , i.e.,

(C1 k P ) + A and �(C1; A) = tt. By Lemma 4.9, then, ((C1 + C2) k P ) + A, from which we may

infer ((D1 + D2) k P ) + A and �(D1 + D2; A) = �(C1 + C2; A) = tt by Prop. 4.1. This means, by

Lemma 4.9, that �(Di; A) = tt and (Di k P ) + A, for some i 2 f1; 2g. Thus, hA;P i 2 [[D1]]
tt
1 [ [[D2]]

tt
1

which implies [[C1]]
tt
1 � [[D1]]

tt
1 [ [[D2]]

tt
1 . A similar argument shows that [[C2]]

tt
1 � [[D1]]

tt
1 [ [[D2]]

tt
1 which

yields [[C1]]
tt
1 [ [[C2]]

tt
1 � [[D1]]

tt
1 [ [[D2]]

tt
1 . The other direction follows by symmetry.
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Finally, assume hA;P i 2 [[C1]]
�
1 \ [[C2]]

�
1 , i.e., �(Ci; A) = � and (Ci k P ) + A. Lemma 4.9 implies

((C1 + C2) k P ) + A. Now we apply Prop. 4.1 again, which establishes ((D1 + D2) k P ) + A.

Moreover, �(D1 + D2; A) = �(C1 + C2; A) = �, whence both �(D1; A) = � = �(D2; A). A �nal

reference to Lemma 4.9 implies (D1 k P ) + A and (D2 k P ) + A. This veri�es the inclusion

[[C1]]
�
1 \ [[C2]]

�
1 � [[D1]]

�
1 \ [[D2]]

�
1 . The other direction, again, is by symmetry.

This �nishes the proof.

Prop. 4.6 yields a second re�nement of our fully{abstract semantics that now only depends on the response

behavior of parallel con�gurations in parallel contexts. However, it still refers to the syntax. In the next

section the main work will be done, presenting a semantic analysis of the dynamic interaction between

parallel con�gurations.

We �nally want to remark that our de�nition of watchdogs is not the most e�cient one possible. For

instance, consider con�gurations C1 =df a=bc and C2 =df b=cd, for which E =df �(C1) [ �(C2) = fa; b; c; dg.

Then, the sets A � E, for which both �(C1; A) = � and �(C2; A) = tt, are A1 =df ;, A2 =df fcg, A3 =df fdg,

and A4 =df fc; dg. Thus, we get by our de�nition of watchdogs:

watch(C1; C2) = A1; E nA1=? k A2; E nA2=? k A3; E nA3=? k A4; E nA4=?

= a b c d=? k c a b d=? k d a b c=? k c d a b=? :

This parallel con�guration, read as logic formula, corresponds to the conjunction

:(:a ^ :b ^ :c ^ :d) ^ :(c ^ :a ^ :b ^ :d) ^ :(d ^ :a ^ :b ^ :c) ^ :(c ^ d ^ :a ^ :b)

which is classically, as well as intuitionistically, equivalent to :a ^ :b. Hence, the four sets A1{A4 could as

well be described by the conjunction :a ^ :b. Indeed, one can show that watch(C1; C2) ' a b=? which is

obviously a more compact formulation. In general, as suggested above, we may invoke classic Boolean logic

to simplify watchdogs, as watchdogs are essentially negated formulas which behave classically.

4.3. Full{abstraction Theorem. Once a con�guration C 2 C is transformed into a sum
P

i2ind(C) Ci

of parallel con�gurations, its semantics may be uniquely determined by the behavior of the Ci 2 PC. By

Prop. 4.1 it is enough to know the responses of each Ci in all parallel contexts, together with the information

of whether these responses are active or passive. Moreover, by Thms. 3.5 and 3.10, the responses of Ci

in all parallel contexts are characterized by their behaviors Beh(Ci). Therefore, the responses of C in all

contexts must be determined by the sets Beh(Ci) and �(Ci; A), for all i 2 ind(C) and A ��n � n f?g.

Unfortunately, the obvious but somewhat naive idea of simply collecting all the sets Beh(Ci), together with

their triggering behavior �A: �(Ci; A), and then considering the identity of sets as equivalence does not

work. The semantics de�ned in this direct way, namely [[C]] =df fhBeh(Ci) ; �A: �(Ci; A) i j i 2 ind(C)g,

would not allow us to derive, e.g., the congruence a=b + b=a ' a=b k b=a. Indeed, it is not the case that

[[a=b + b=a]] = fhBeh(a=b); �A: �(a=b; A)i ; hBeh(b=a); �A: �(b=a;A)ig is the same set as [[a=b k b=a]] =

fhBeh(a=b k b=a); �A: �(a=b k b=a;A)ig since, e.g., Beh(a=b) is di�erent from Beh(a=b k b=a). However, it is

true that Beh(a=b) and Beh(b=a) together cover the same behavior as Beh(a=b k b=a). To achieve a simple

formalization of this covering property, it is useful to consider the \complements" of Beh(a=b), Beh(b=a),

and Beh(a=b k b=a), to which we refer as (semantic) contexts.

Definition 4.7 (Context). Let A ��n �. An A{bounded behavior P = hF; Ii is called an A{context

for C 2 PC if (i) A 2 F (C), and (ii) I(A) \ I(C)(A) = fAg holds, where hF (C); I(C)i = Beh(C).
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fa; bg

fag

fb; cg

fcg fb; cgfa; cg

P1 P2
fa; cg

fa; b; cg

fa; b; cg fa; b; cg

fbg

;

Fig. 4.1. Complement behavior for Fig. 3.1 (left) and its covering fa; b; cg{contexts (right).

An A{context P of C represents a set of sequences that all end in the �nal world A, in which also some

sequence model of C must end (cf. Prop. (i)), but which only have the �nal world A in common with

the sequence models of C (cf. Prop. (ii)). These properties imply that, for every con�guration P with

Beh(P ) = P , we have (C k P ) + A. Note that, since every A{context hF; Ii is A{bounded, I is essentially

just a \{closed subset of 2A with top element A. In other words, an A{context hF; Ii may be identi�ed with

the complete (\;�) sub{semi{lattice I(A) of 2A. We will henceforth use the simpler presentation hA; I(A)i

rather than hfAg; Ii. In fact, we might even write I(A) since the top element is uniquely determined, but it

is often useful to indicate the top element explicitly.

In the following, we will only be interested in the maximal A{contexts of a con�guration C 2 PC, where

maximality is with respect to the natural component{wise subset{ordering on A{bounded behaviors. More

precisely, given two A{bounded behaviors P = hA; I(A)i and P 0 = hA; I 0(A)i, we say that P is a sub{behavior

of P 0, written P � P 0, if I(A) � I 0(A). Then, an A-context of C is called maximal if P � P 0 implies P = P 0,

for all A{contexts P 0 of C. Because of the �niteness of A{bounded behaviors, every A{context of C must

be contained in a maximal one.

Consider again the example C =df bc=a k ac=b k a=a k b=b k c=c from above, whose A{bounded

behavior Beh(C) = hfAg; I(C)i, where A = fa; b; cg, is described by the diagram of Fig. 3.1. To get the

A{contexts of C, we must consider the \holes" in I(C)(A), i.e., all B � A that are missing in the lattice

of Fig. 3.1. This is illustrated by the left diagram in Fig. 4.1, where lattice Beh(C) is indicated by dashed

lines and the holes by solid arrows. As one can see, this \complement" is not itself a behavior, e.g., it is not

\{closed, but it can be covered by the two A{contexts

P1 =df hfa; b; cg; ffa; cg ; fa; b; cggi and P2 =df hfa; b; cg; ffb; cg ; fa; b; cggi ; (4.4)

which are drawn separately in Fig. 4.1 on the right. In fact, P1 and P2 are the two maximal A{contexts

of Beh(C). Since they are behaviors, the A{contexts can be represented by parallel con�gurations, such as

P1 =df �=ac k b=b and P2 =df �=bc k a=a, respectively. These maximal A{contexts subsume all environments

in which C takes part in response A. Indeed, one can check that (C k P1) + A and (C k P2) + A.

For every C 2 PC and b 2 B , we �nally de�ne

[[C]]b2 =df fhA; I(A)i jA ��n �; �(C;A) = b; and hA; I(A)i is an A{context for Cg:

The elements hA;Li 2 [[C]]b2 are (\;�) sub{semi{lattices L of 2A that represent all the bounded context

behaviors, i.e., environments, generating the joint response A. The superscript b 2 B determines whether C

is actively participating (b = tt) or only passively admitting (b = �) the macro step resulting in A. In

the latter case, the response must entirely come from the environment. This is re
ected in the fact that
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all passive contexts hA;Li 2 [[C]]�2 are of the form hA;Li = hA; fAgi, which we will abbreviate as idA for

convenience. The passive A{context idA means that the environment P must be equivalent to transition �=A

in order for (C k P ) + A to hold. Another structural property, which we may take advantage of, is that

an A{context P is contained in [[C]]tt2 if and only if there exists a maximal A{context Pmax 2 [[C]]tt2 with

P � Pmax. Consequently, we only need to list the maximal elements of [[C]]tt2 relative to any given response A.

We now obtain our main theorem as a corollary to Prop. 4.6 and Thm. 3.5.

Theorem 4.8 (Full Abstraction). Let C;D 2 C. Then, C ' D if and only if[
i2ind(C)

[[Ci]]
tt
2 =

[
j2ind(D)

[[Dj ]]
tt
2 and

\
i2ind(C)

[[Ci]]
�
2 =

\
j2ind(D)

[[Dj ]]
�
2 :

The proof of this theorem requires the following distributivity property stated in terms of admissible sets of

transitions, which is proved in App. A.

Lemma 4.9 (Distributivity). Let S;C;D 2 C be con�gurations, E ��n �, and T � T . Then, T is

E{admissible for S k (C + D) if and only if one of the following conditions holds:

1. T \ trans(C) 6= ;, and T is E{admissible for S k C.

2. T \ trans(D) 6= ;, and T is E{admissible for S k D.

3. T � trans(S), and T is E{admissible for both S k C and S k D.

Moreover, in Case (1) we have T � trans(S k C) and in Case (2) T � trans(S k D).

Using this lemma, we are now going to prove Thm. 4.8.

Proof. [Theorem 4.8] We begin with two observations about A{contexts, for A ��n �. First, for every

P 2 PC, consider the pair Beh(P;A) =df hA;Li with L =df fV (0) j (n; V ) 2 SM (P ) and V (n� 1) = Ag. For

every C 2 PC, it possesses the property

(C k P ) + A if and only if Beh(P;A) is an A{context of C : (4.5)

This follows essentially from Thm. 3.4 and Def. 4.7 of A{contexts. Note that if A is not a classic model of P

then Beh(P;A) is not even a behavior. Second, suppose hA;Li is a (\;�) sub{semi{lattice of 2A. Then,

by Thm. 3.11, there must exist a parallel con�guration P 2 PC in the events A and not using ?, such

that Beh(P ), when restricted to the events A, is identical to hA; I(A)i, as well as I(A) = L. These also

satisfy, for every C 2 PC, the property

(C k P ) + A if and only if hA;Li is an A{context of C : (4.6)

Thm. 4.8 is now a consequence of Prop. 4.6 and the following facts. For all A ��n �, D 2 PC, and b 2 B :

8L 9P: hA;Li 2 [[D]]b2 if and only if hA;P i 2 [[D]]b1 ; and (4.7)

8P 9L: hA;P i 2 [[D]]b1 if and only if hA;Li 2 [[D]]b2 : (4.8)

For establishing Statements (4.7) and (4.8), we use Statements (4.6) and (4.5), respectively, together with

the construction of behavior Beh(P;A) and Thm. 3.5. In both cases, we also exploit that the triggering

indicator � only depends on A, but not on the above P or L. Thm. 4.8 is derived from Statements (4.7)

and (4.8) and from Prop. 4.6 in the obvious fashion.

Let us consider some examples. For the con�guration in Fig. 4.1, we have [[C]]tt2 = fP1 ; P2g and [[C]]�2 = ;,

where P1 and P2 are given in Equation (4.4). Note, that here and in the following, we only list maximal
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contexts. This structure can also be generated from the sum D1 + D2, where D1 =df ac=b k b=b k c=c and

D2 =df bc=a k b=b k a=a. One obtains

[[D1]]
tt
2 = f P1 g ; [[D2]]

tt
2 = f P2 g ; [[D1]]

�
2 = fidfb;cgg ; and [[D2]]

�
2 = fidfa;bgg :

Hence, [[D1]]
tt
2 [ [[D2]]

tt
2 = [[C]]tt2 and [[D1]]

�
2 \ [[D2]]

�
2 = ; = [[C]]�2 . By Thm. 4.8, then, C ' D1 + D2. The

Statecharts axiom hidden in this example, which re
ects a causality principle, is

a=b k b=a ' a=b + b=a ; (4.9)

for any events a; b 2 �. Intuitively, this congruence states that, if a and b mutually depend on each other

(left{hand side), then either a causes b or b causes a (right{hand side). We might call this the \tie{break

axiom" or \causality axiom." More speci�cally, we obtain the following semantics:

[[a=b k b=a]]tt2 = f hfa; bg; ffag ; fa; bggi ; hfa; bg; ffbg ; fa; bggi g

[[a=b k b=a]]�2 = f id; g

[[a=b]]tt2 = f hfa; bg; ffag ; fa; bggi g

[[a=b]]�2 = f id; ; idfbg g

[[b=a]]tt2 = f hfa; bg; ffbg ; fa; bggi g

[[b=a]]�2 = f id; ; idfag g :

From this we compute [[a=b k b=a]]tt2 = [[a=b]]tt2 [ [[b=a]]tt2 and [[a=b + b=a]]�2 = [[a=b]]�2 \ [[b=a]]�2 . Hence, with

Thm. 4.8, the congruence in Equation (4.9) is obtained.

To �nish o�, we return to Sec. 3 and re{visit the compositionality problem in the light of our semantics.

First of all, one veri�es that C79 = b=a + b=a �= b=a k b=a = C 0
79, as stated in Sec. 3. The semantics of

parallel con�guration C 0
79 2 PC is

[[C 0
79]]

tt
2 = f h fag ; f;; fagg i ; h fa; bg ; ffbg; fa; bgg i g and [[C 0

79]]
�
2 = ; :

The active and passive contexts of b=a have been given above; it remains to analyze b=a:

[[ b=a ]]tt2 = f h fag ; f;; fagg i g and [[ b=a ]]�2 = f idfbg; idfa;bg g :

When combining the pieces, we obtain [[C 0
79]]

tt
2 = [[ b=a ]]tt2 [[[ b=a ]]

tt
2 and [[C 0

79]]
�
2 = ; = [[ b=a ]]�2 \[[ b=a ]]

�
2 , whence

C 0
79 ' b=a + b=a = C79. In addition, our semantics shows why con�gurations C79 and C

0
79 are distinguished

from C14 = �=a k b=a. Con�guration C14 has the active fa; bg{context hfa; bg; f;; fbg; fa; bggi 2 [[C14]]
tt
2 which

is not contained in [[C 0
79]]

tt
2 or in [[ b=a ]]tt2 [ [[ b=a ]]tt2 . This fa; bg{context hfa; bg; f;; fbg; fa; bggi corresponds

to context �56[x] = x k a=b used in Sec. 3 to di�erentiate C79 from C14. It shows that �[C14] + fa; bg but

�[C79] 6+ fa; bg.

With Thm. 4.8 (full abstraction) we have �nally achieved our goal. Summarizing, the fully{abstract

semantics developed in this report consists of the mapping [[�]]3 given by

[[C]]3 =df h
[

i2ind(C)

[[Ci]]
tt
2 ;

\
i2ind(C)

[[Ci]]
�
2 i :

Thm. 4.8 implies that C ' D if and only if [[C]]3 = [[D]]3. This means that [[�]]3 is compositional in the

algebraic sense, i.e., if [[C]]3 = [[D]]3 then [[�[C]]]3 = [[�[D]]]3, for all contexts �[x]. In contrast to [[C]]1,
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and indeed to the starting point [[C]]0, this fully{abstract interpretation [[C]]3 is both satisfactorily semantic

and �nite. It is also natural in that it realizes the obvious logical interpretation of (parallel) con�gurations

as sequences of micro steps. Hence, the Statecharts semantics of Pnueli and Shalev is quite natural and

elegant. Moreover, we believe that [[C]]3, in combination with Lemma 4.4 (expansion), directly lends itself

to be applied for a model{based implementation of Pnueli and Shalev's semantics, which does not require

backtracking for handling failure.

However, our semantics [[�]]3 is not denotational, which would require that [[�[C]]]3 is obtained directly

from [[C]]3, when reading the syntactic operators of �[x] as suitable constructions in the semantic domain.

As presented, the de�nition of [[C]]3 depends on the transformation of C into a sum form
P

i2ind(C) Ci, which

is a purely syntactic process. For a denotational semantics, this \normalization" would have to be performed

directly in the semantic domain.

4.4. Conservativity. This section establishes that our extension of the standard Statecharts syntax by

arbitrary choices C + D, where D 2 C, and by the failure event ? is conservative, i.e., the full{abstraction

result regarding our con�guration algebra is also true for the original Statecharts language. As a byproduct

of our investigation, we obtain a proof for Prop. 4.1, too.

Formally, let Cf be some distinguished subset of C, and let PCf be the parallel con�gurations in Cf ,

i.e., PCf =df Cf \ PC. In the fragments Cf and PCf , we consider two congruences 'f and '+
f , respectively,

which are de�ned as follows:

C 'f D if and only if 8�[x] 2 Cf ; E;A ��n �: �[C] +E A if and only if �[D] +E A :

C '+
f D if and only if 8P 2 PCf ; E;A ��n �; b 2 B :

((C k P ) +E A and �(C;A) = b) if and only if ((D k P ) +E A and �(D;A) = b) :

In the special case Cf = C, we simply write ' and '+ instead of 'f and '+
f , respectively. The key step

towards our conservativity result is to show that, when fragment Cf encompasses a minimum amount of

discriminating contexts, the equivalence between C '+ D and C '+
f D entails the equivalence between

C 'f D and C '+
f D.

Lemma 4.10. Let Cf be a fragment of C satisfying the following two conditions: (i) Cf is closed under

the operations [�] + t and [�] k t, for all transitions t in Cf , is closed under sub{con�gurations, and contains

at least the transitions �=A, for all A ��n � n f?g; and (ii) C '+ D if and only if C '+
f D. Then, C 'f D

if and only if C '+
f D.

The proof of this lemma can be found in App. A. A direct consequence of it, for the fragment Cf =df C, is

Prop. 4.1 which essentially states that C ' D is equivalent to C '+ D. As another consequence, consider

the standard fragment Cs � C of Statecharts, which consists of all con�gurations that (1) use the hierarchy

operator only in the special form [�] + t, for arbitrary transitions t 2 T , and (2) do not contain the failure

event ? or its negation in any transition trigger or action.

Given an arbitrary parallel con�guration P 2 PC, we de�ne its standardization to be the con�guration

Ps 2 PCs, obtained from P by dropping all transitions containing ? in their triggers or actions, as well

as dropping all occurrences of ? from the triggers of the remaining transitions. Note that Ps may be the

empty con�guration even though P is not. Obviously, by removing from P transitions with ? in their

actions, we lose information about the failure behavior of P . In fact, Ps does not produce any failure due

to the presence of events. For example, parallel con�guration P might contain transition a=?. Then, P
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produces a failure whenever the environment o�ers event a, but Ps does not since a=? is dropped. To

recover this information, we de�ne, for every P 2 PC, a set fail(P ) � 2�nf?g of those environments that

would trigger a transition having ? in its actions and, hence, would produce a failure. More precisely, let

P? 2 PC be the parallel composition of all transitions of P that have ? in their action. Then, fail(P ) =df

fA ��n � n f?g j �(P?; A) = ttg. Taking into account the sets fail(P ), we can show that this standardization

does not change the communication behavior of parallel con�gurations.

Lemma 4.11. Let C 2 C, A ��n �, and P 2 PC. Then, (C k P ) + A if and only if (C k Ps) + A and

A 62 fail(P ).

Proof. Let P 2 PC and A ��n � n f?g be arbitrary. We �rst prove that

A 62 fail(P ) implies triggered(P;A) = triggered(Ps; A) : (4.10)

Inclusion triggered(Ps; A) � triggered(P;A) is trivial since the transitions of Ps are a subset of those of P ,

possibly having an extra trigger event ? in P , which does not a�ect their enabling as ? 62 A. For the

inclusion triggered(P;A) � triggered(Ps; A), we assume A 62 fail(P ). Let t 2 triggered(P;A), i.e., t is a

transition of P enabled by A. Since A 62 fail(P ), transition t does not have event ? in its action. Similarly,

it cannot have ? in its trigger; otherwise, it would not be enabled, given ? 62 A. This means that t must

be contained in Ps, with any ? in its trigger removed. In any case, transition t is still enabled. Hence,

triggered(P;A) � triggered(Ps; A). Statement (4.10) implies that (C k P ) + A if and only if (C k Ps) + A

and A =2 fail(P ), for all C 2 C, since P is a parallel context, and that (D k R) + A implies ? 62 A and

A =2 fail(R), for any con�gurations D 2 C and R 2 PC.

As a consequence of the above lemma, we now obtain the desired result for the standard fragment.

Lemma 4.12. Let C;D 2 C. Then, C '+ D if and only if C '+
s D.

Proof. Direction \=)" is trivial since the standard parallel contexts are just a special class of parallel

contexts. For the other direction, suppose C '+
s D. Let P 2 PC, A ��n �, and b 2 B be such that

(C k P ) + A and �(C;A) = b. By direction \=)" of Lemma 4.11, (C k Ps) + A and A 62 fail(P ). Since

Ps 2 PCs and C '+
s D we infer (D k Ps) + A and �(D;A) = b. Another application of Lemma 4.11, this

time direction \(=" for con�guration D, yields (D k P ) + A. Hence, we have shown that, for all P 2 PC,

A ��n �, and b 2 B ,

((C k P ) + A and �(C;A) = b) implies ((D k P ) + A and �(D;A) = b) :

Since our argument is symmetric in C and D, we can establish the other direction, too.

We are now ready to summarize the conservativity properties.

Theorem 4.13 (Conservativity). For arbitrary C;D 2 C, the following statements are equivalent:

(1) C ' D , (2) C '+ D , (3) C 's D , and (4) C '+
s D .

Proof. The equivalence \(1) () (2)" follows from Lemma 4.10 for the fragment Cf =df C, whereas

equivalence \(2) () (4)" is the statement of Lemma 4.12. Finally, equivalence \(3) () (4)" arises from

specializing Lemma 4.10 to fragment Cs, using result \(2) () (4)" and the fact that Cs satis�es Assump-

tion (i) required in Lemma 4.10.

The equivalence of C ' D and C 's D is a crucial result since it shows that there are no additional semantic

distinctions introduced by our use of a more general con�guration syntax. Hence, whenever we restrict
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ourselves to the standard fragment we obtain exactly the same compositional semantics as if we had used

the restricted language in the �rst place. This substantiates our claim that our semantics is fully abstract for

Statecharts and the operational step semantics of Pnueli and Shalev, despite the fact that we are employing

a slightly richer syntax.

5. Related Work. Our investigation focused on Pnueli and Shalev's original presentation [17] of Stat-

echarts and its macro{step semantics. Like [17] we only consider single macro steps since it is here where the

main challenge for a fully{abstract semantics of Statecharts lies. The elegance of Pnueli and Shalev's opera-

tional semantics manifests itself in the existence of an equivalent declarative �xed point semantics. However,

as illustrated in [17], this equivalence breaks down when allowing disjunctions in transition triggers. For

example, the con�gurations (a _ b)=a and a=a k b=a do not have, as was expected, the same response

behavior. This subtlety can be explained in our intuitionistic framework. In Pnueli and Shalev's setting,

a_ b is classically interpreted as \throughout the macro step, not a or b." In contrast, this report's approach

reads the con�guration as \throughout the macro step not a, or throughout the macro step b." Our stronger

intuitionistic interpretation restores the coincidence of operational and declarative semantics. This assumes,

of course, that the former is adjusted accordingly, which is not di�cult, however. The step procedure must

only ensure that, whenever transition (a_ b)=a is �red due to absence of a, event a is prohibited to occur in

any subsequent micro step. Our approach also suggests other extensions to larger fragments of intuitionistic

logic, such as \higher{order" transitions, e.g., (a � b) � c, which may be explored in the future.

Our framework can also be employed for analyzing various other asynchronous Statecharts variants with

global consistency. One example is the work of Maggiolo{Schettini et al. [15], which is inspired by the

process{algebraic semantics presented in [13, 18]. In [15], and also in [14], the step{construction procedure

cannot fail since a transition is only considered to be enabled, if it is enabled in the sense of Pnueli and

Shalev and if it does not produce any event that violates global consistency. This novel semantics is speci�ed

using a notion of compatibility [15] which introduces a look{ahead concept for avoiding failures during the

construction of macro steps. As an example, consider con�guration C =df t1 k t2, where t1 =df a=b and

t2 =df b=a. According to [15], when C is evaluated in the empty environment, the response fag is obtained:

First, transition t2 �res due to the absence of event b, thereby producing event a. The presence of a now

satis�es the trigger of t1. Its execution would introduce event b, whence transition t1 is incompatible with t2

which has �red due to the absence of event b. Therefore, transition t1 is disabled in [15]. In Pnueli and

Shalev's original semantics, however, t1 is enabled with the consequence that the step construction is forced

to fail. The di�erence between the two semantics can be explained in terms of stabilization sequences. While

Pnueli and Shalev take t1 to stand for the speci�cation a � b and t2 for :b � a, Maggiolo{Schettini et

al. apply the interpretation a � (b _ :b) for t1 and :b � (a _ :a) for t2. Thus, e.g., t1 is read as \if a

becomes present then either b is asserted or b never becomes present." The second case \b never becomes

present" accommodates the possibility that t1, even though its trigger a is satis�ed, is not taken due to an

incompatibility with another transition in the environment that requires the global absence of b. A similar

remark applies to transition t2. Indeed, one can show that con�guration

Cenc =df t1 k t2 = (a � (b _ :b)) ^ (:b � (a _ :a))

possesses fag as a response model, in the sense of Def. 3.3, which is in accordance with the operational

semantics of [15]. Note that this encoding, again, crucially depends on the fact that a_:a di�ers from true

in intuitionistic logic. Generalizing this example, we conjecture that the transition semantics of [14, 15]
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can be captured in terms of response models by reading a transition E=A as formula E � (A _ :A). Of

course, our language of con�gurations needs to be extended to allow disjunctions as part of transition actions.

We further want to remark that it is possible to translate between the two considered semantics [15, 17]

using our framework. For instance, the sequence model semantics of Cenc may be captured by con�guration

a=b + b=a. This con�guration has the same operational behavior in Pnueli and Shalev's step semantics as C

has in [15]. Moreover, we expect that our semantics may also be useful to derive full{abstractness results

for the semantics in [15] and other Statecharts semantics with global consistency. Especially, lifting our

results to sequences of macro steps should not present any major di�culties when employing the standard

framework of transition systems.

Other investigations into the compositionality problem of Statecharts were conducted by Uselton and

Smolka [18] who model Statecharts' macro steps by labeled transition systems in a process{algebraic style.

They achieve compositionality by using partial orders on events, which encode causality information, as

transition labels. As was pointed out by Levi in [13], the partial orders on events used by Uselton and

Smolka are not su�cient to capture Pnueli and Shalev's semantics faithfully. Levi's semantics remedies

the problem by employing partial orders on sets of events. Although this semantics complies with the

one of Pnueli and Shalev, no full{abstraction result is presented. It should be noted that our semantics,

too, uses a lattice{theoretic structure on sets of events. The elements hA;Li of [[C]]tt2 , which represent the

active responses of C, are (\;�) sub{lattices of 2A that correspond to the transition labels in Levi's work.

The main di�erence between our approach and the ones in [13, 18] is that our lattices do not contain any

negative events, whence they may be considered more semantic in nature. The precise relationship between

our semantics and that of [13] still needs to be explored.

Our intuitionistic approach is also related to recent work in synchronous languages, especially Berry's

esterel [3]. In esterel, causality is traditionally treated separately from compositionality and synchrony,

as part of type{checking speci�cations. If the (conservative) type checker �nds causality to be violated, it

rejects the speci�cation under consideration. Otherwise, the speci�cation's semantics can be determined in a

very simple fashion, since one may | in contrast to Statecharts semantics | abstract from the construction

details of macro steps while preserving compositionality. This was shown by Broy in [5], using a domain{

theoretic account of abstracting from a sequence of micro steps to a macro step based on streams. The more

recent Version 5 of esterel, however, replaces the restrictive treatment of causality by de�ning a semantics

via a particular Boolean logic that is constructive [2], as is intuitionistic logics. The constructive semantics

of esterel is especially interesting since it relates to the traditional semantics for digital circuits [2, 4].

Denotational semantics and full abstraction were also studied by Huizing et al. [10, 11] for an early and

lateron rejected Statecharts semantics [9]. In particular, that semantics does not consider global consistency,

which makes their result largely incomparable to ours. Also, the abstractness result is proved with respect

to a richer set of syntactic operators than we consider here. Finally, it should be mentioned that the lack of

compositionality of Statecharts semantics inspired the development of new visual languages, such as Alur et

al.'s communicating hierarchical state machines [1], Maraninchi's argos [16], and Leveson's rsml [12].

6. Conclusions and Future Work. To the best of our knowledge, this is the �rst report to present a

fully{abstract Statecharts semantics for Pnueli and Shalev's original macro{step semantics [17]. The latter

semantics was found to be non{compositional as it employs classic logic for interpreting macro steps. In

contrast, our semantics borrows ideas from intuitionistic logic. It encodes macro steps via stabilization

sequences which we characterized using semi{lattice structures, called behaviors. Behaviors capture the
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interactions between Statecharts and their environments and consistently combine the notions of causality,

global consistency, and synchrony in a model{theoretic fashion. Thus, our approach suggests a model{based

implementation of Pnueli and Shalev's semantics, thereby eliminating the need to implement failure via

backtracking. It further permits the introduction of more general trigger conditions, including disjunctions,

which solves some of the di�culties reported in [17].

Regarding future work, several further theoretical investigations need to be conducted. First, we plan

to derive a fully{abstract denotational semantics for Statecharts on the basis of our results. To this end, we

need to �nd a semantic mapping that does not depend on a syntactic normalization. Second, the macro{step

semantics for single con�gurations should be lifted to the full Statecharts semantics which involves sequences

of macro steps. We also intend to employ our framework for developing algebraic characterizations of step

congruence and for uniformly comparing various variants of Statecharts' macro{step semantics studied in the

literature [13, 14, 15]. Practical applications of our work include semantic{based program transformations,

abstract analyses, and compositional code generation.
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Appendix A. Proofs of Lemmas 4.4 and 4.10. We �rst prove Lemma 4.4.

Proof. First note that we may assume T � trans(C) [ trans(D) [ trans(S). Otherwise, T would not be

admissible for any of S k (C + D), or S k C, or S k D, in which case the statement of the theorem would

be trivially true. Under this assumption, then, Conds. (1) T \ trans(C) 6= ;, (2) T \ trans(D) 6= ;, and

(3) T � trans(S) cover all possible cases. We �rst derive a few simple facts about the relationship between

function enabled for S k (C + D), on the one hand, and enabled for S k C and S k D, on the other hand.

We start o� by stating the equality

enabled(S k (C + D); E; T 0) = enabled(S k C;E; T 0) [ enabled(S k D;E; T 0) (A.1)

which can be proved by a straightforward calculation employing the de�nition of enabled. Next, observe

that, for all T 00 � trans(S k C) and all sets T 0 � T of transitions, we have

enabled(S k (C + D); E; T 0) \ T 00 = enabled(S k C;E; T 0) \ T 00 (A.2)

and, symmetrically, if T 00 � trans(S k D), then

enabled(S k (C + D); E; T 0) \ T 00 = enabled(S k D;E; T 0) \ T 00 : (A.3)

The proofs of these statements are quite easy, as in the �rst case, we have consistent(S k (C + D); T 0)\T 00 =

consistent(S k C; T 0)\T 00; in the second case, consistent(S k (C + D); T 0)\T 00 = consistent(S k D;T 0)\T 00.

Now we proceed to prove our distributivity lemma. We begin with Case (1), i.e., T \ trans(C) 6= ;. Suppose

that T is E{admissible for S k (C + D). Since T contains at least one transition from C, it cannot include

any transition from D; otherwise, T would not be consistent for S k (C + D). Thus, ; 6= T � trans(S k C).

The property of E{admissibility and Prop. (A.2) imply

T = enabled(S k (C + D); E; T ) = enabled(S k C;E; T ) \ trans(S k C) = enabled(S k C;E; T ) : (A.4)

Now let T 0 � T be given. Since T is E{inseparable and T � trans(S k C), we have by Prop. (A.2) that

enabled(S k C;E; T 0) \ (T n T 0) = enabled(S k (C + D); E; T 0) \ (T n T 0) 6= ; :

Together with Prop. (A.4), this shows that T must be E{admissible for S k C. Vice versa, if T is E{

admissible for S k C, then ; 6= T � trans(S k C), too. Again, Prop. (A.4) implies that T is E{admissible

for S k (C + D). Case (2) is handled completely symmetrically to Case (1), using Prop. (A.3) to establish

T = enabled(S k (C + D); E; T ) = enabled(S k D;E; T ) as well as the E{inseparability of T for S k D.

It remains to consider Case (3), i.e., T � trans(S); in particular, T � trans(S k C). If T is E{admissible

for S k (C + D), then T = enabled(S k (C + D); E; T ). We use Prop. (A.2) to obtain enabled(S k C;E; T ) =

enabled(S k C;E; T ) \ T = enabled(S k (C + D); E; T ) \ T = T . We can also employ Prop. (A.2)

to show that T is inseparable for S k C. If T 0 � T , then (T n T 0) � trans(S); as a consequence,

enabled(S k C;E; T 0) \ (T n T 0) = enabled(S k (C + D); E; T 0) \ (T n T 0) 6= ;, where the inequality

is due to the E{inseparability of T with respect to S k (C + D) and to the �rst equation derived from

Prop. (A.2). This completes the proof that T is E{admissible for S k C. In an analogous fashion, one can

show that T is E{admissible for S k D using Prop. (A.3). For the other direction of Case (3), assume that

T � trans(S) is E{admissible for both S k C and S k D. From Prop. (A.1), for arbitrary T 0 � T , we conclude

enabled(S k (C + D); E; T 0) = enabled(S k C;E; T 0)[ enabled(S k D;E; T 0). An immediate consequence of

enabled(S k C;E; T ) = T = enabled(S k D;E; T ) is that enabled(S k (C + D); E; T ) = T . Moreover, for any
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T 0 � T , and since enabled(S k C;E; T 0)\(T nT 0) 6= ;, we also have enabled(S k (C + D); E; T 0)\(T nT 0) 6= ;.

Thus, T is E{admissible for S k (C + D).

We are now able to establish Lemma 4.10.

Proof. [Lemma 4.10] For proving direction \(=", suppose that C '+
f D. By Assumption (ii) this is

equivalent to C '+ D, i.e., we have

((C k P ) +E A and �(C;A) = b) if and only if ((D k P ) +E A and �(D;A) = b) ; (A.5)

for all parallel con�gurations P 2 PC, event sets E;A ��n �, and b 2 B . We must show that

�[C] +E A if and only if �[D] +E A ; (A.6)

for all contexts �[x] 2 Cf and E;A ��n �. We shall prove the following somewhat stronger invariant by

induction on the structure of contexts �[x]. For every con�guration S 2 C and every set T1 of transitions

such that T1 is admissible for S k �[C], there exists a set T2 of transitions, which is admissible for S k �[D],

such that

act(T1) = act(T2) ; (A.7)

T1 \ trans(S) = T2 \ trans(S) ; and (A.8)

T1 � trans(S) if and only if T2 � trans(S) : (A.9)

Observing that any initial set E of environment events may be accounted for in con�guration S, it imme-

diately follows that �[C] +E A implies �[D] +E A. Since the other direction is obtained by symmetry,

the proof of direction \(=" of the proposition is then completed. In the following, we �rst deal with the

induction step and subsequently with the slightly more complicated base case.

� Case �[x] = R k 	[x] is a trivial application of the induction hypothesis which is phrased so that it

quanti�es over arbitrary parallel contexts. Note that 	[x] 2 Cf by Prop. (i) for fragment Cf (closure

under sub{con�gurations). Let T1 be admissible for S k R k 	[C]. When taking S0 =df S k R and

applying the induction hypothesis to S0 k 	[C], we obtain a set T2 of transitions which is admissible

for S k R k 	[D], such that

act(T1) = act(T2) ;

T1 \ trans(S k R) = T2 \ trans(S k R) ; and

T1 � trans(S k R) if and only if T2 � trans(S k R) :

The �rst equality yields Equation (A.7). Moreover, since trans(S k R) = trans(S) [ trans(R) and

trans(S) \ trans(R) = ;, the last two equivalences imply T1 \ trans(S) = T2 \ trans(S), as well as

T1 � trans(S) if and only if T2 � trans(S), as required for Props. (A.8) and (A.9).

� When the context is of form �[x] = R + 	[x], for some 	[x] 2 Cf , we let T1 be admissible for

S k (R + 	[C]). By Lemma 4.9 (distributivity) we have to consider three cases:

1. T1 \ trans(R) 6= ;, and T is admissible for S k R .

2. T1 \ trans(	[C]) 6= ;, and T1 is admissible for S k 	[C] .

3. T1 � trans(S), and T1 is admissible for both S k R and S k 	[C] .

In Case (1), we immediately have that T1 is admissible for S k (R + 	[D]), simply by applying

Lemma 4.9(1) backwards. Hence, we may choose T2 =df T1 to satisfy Equations (A.7){(A.9). In
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Cases (2) and (3), we appeal to the induction hypothesis as applied to context 	[x]. This yields a

set T2 of transitions, which is admissible for S k 	[D], with the properties

act(T1) = act(T2) ;

T1 \ trans(S) = T2 \ trans(S) ; and

T1 � trans(S) if and only if T2 � trans(S) :

This proves Props. (A.7){(A.9) for Cases (2) and (3) together. What remains to be seen is that T2

is admissible for S k (R + 	[D]). We demonstrate this separately for Cases (2) and (3).

Let Case (2) be given, i.e., T1 \ trans(	[C]) 6= ;. This implies T1 6� trans(S), whence T2 6� trans(S)

by Prop. (A.9). Since T2 � trans(S k 	[D]) we obtain T2\trans(	[D]) 6= ;. According to Lemma 4.9

(distributivity), T2 is admissible for S k (R + 	[D]), which was to be shown.

Finally, suppose we have Case (3), i.e., T1 � trans(S), and T1 is admissible for S k R. By Prop. (A.9),

T2 � trans(S) and, further, T1 = T1 \ trans(S) = T2 \ trans(S) = T2 by Prop. (A.8). But then T2 is

admissible not only for S k 	[D] but also for S k R. Hence, T2 is admissible for S k (R + 	[D]) by

Lemma 4.9. This completes our consideration of context �[x] = R + 	[x].

� It remains to prove the base case �[x] = x. Suppose T1 is admissible for S k �[C] = S k C,

where S 2 C is an arbitrary con�guration. Let S1 be the parallel composition of all transitions

from S that are contained in T1. We will use S1 to refer both to this parallel con�guration as well as

to the subset of transition names of T1, depending on the context. It is not di�cult to show that T1 is

admissible for S1 k C, whence (S1 k C) + act(T1). By Assumption (A.5), then, (S1 k D) + act(T1),

i.e., there must exist a set of transitions such that T2 � trans(S1 k D) � trans(S k D) and such

that T2 is admissible for S1 k D and

A =df act(T2) = act(T1) ; and (A.10)

triggered(C;A) = ; if and only if triggered(D;A) = ; : (A.11)

Note, Prop. (A.11) is equivalent to �(C;A) = �(D;A). From Props. (A.10) and (A.11) it follows, so

we claim,

T1 \ trans(S) = T2 \ trans(S) ; and (A.12)

T1 � trans(S) if and only if T2 � trans(S) : (A.13)

Because of T1 � trans(S1 k C) and T2 � trans(S1 k D), Prop. (A.12) is equivalent to T1\trans(S1) =

T2 \ trans(S1). The argument behind this is as follows. Since S1 is a parallel composition of single

transitions and since T1 is admissible for S1 k C, set T1 \ trans(S1) must consist precisely of all

transitions of S1 that are enabled by A. Hence, T1 \ trans(S1) = triggered(S1; A). The same is true

of T2. Hence, T1 \ trans(S1) = T2 \ trans(S1), as desired, which proves Prop. (A.12).

Prop. (A.13) is a consequence of Prop. (A.11). Since T1 is admissible for S1 k C, we have

T1 = consistent(S1 k C; T1) \ triggered(S1 k C;A). This implies that T1 � trans(S1) is equivalent

to triggered(C;A) = ;. For if T1 � trans(S1), then triggered(C;A) � (trans(S1) [ trans(C)) \

(triggered(S1; A) [ triggered(C;A)) = consistent(S1 k C; T1) \ triggered(S1 k C;A) = T1 � trans(S1).

This can only be true if triggered(C;A) = ;. Vice versa, suppose T1 6� trans(S1). As T1 � trans(S1)[

trans(C), this means T1\trans(C) 6= ;. But then, because of T1\trans(C) = consistent(S1 k C; T1)\

triggered(S1 k C;A) \ trans(C) � triggered(S1 k C;A) \ trans(C) = triggered(C;A), we must have
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triggered(C;A) 6= ;. In an analogous fashion one shows that T2 � trans(S1) is equivalent to

triggered(D;A) = ;, using the admissibility of T2 for S1 k D. This proves that Prop. (A.13) di-

rectly follows from Prop. (A.11).

We are now left with the task of verifying that T2 is admissible for S k D. We know that T2 is

admissible for S1 k D and that T1 is admissible for S k C. Also, S1 = T1 \ trans(S) = T2 \ trans(S)

and act(T1) = act(T2) = A. We calculate as follows:

enabled(S k D; ;; T2) \ trans(S)

= consistent(S k D;T2) \ triggered(S k D;A) \ trans(S)

= consistent(S; T2 \ trans(S)) \ triggered(S k D;A) \ trans(S)

= consistent(S; T1 \ trans(S)) \ triggered(S k C;A) \ trans(S)

= consistent(S k C; T1) \ triggered(S k C;A) \ trans(S)

= enabled(S k C; ;; T1) \ trans(S)

= T1 \ trans(S)

= T2 \ trans(S) : (A.14)

The next to last equation follows from the admissibility of T1 for S k C. Moreover, we have

enabled(S k D; ;; T2) \ trans(D)

= consistent(S k D;T2) \ triggered(S k D;A) \ trans(D)

= consistent(D;T2) \ triggered(D;A) \ trans(D)

= consistent(S1 k D;T2) \ triggered(S1 k D;A) \ trans(D)

= enabled(S1 k D; ;; T2) \ trans(D)

= T2 \ trans(D) : (A.15)

The last step is due to the admissibility of T2 for S1 k D. Since T2 � trans(S k D) = trans(S) [

trans(D), Props. (A.14) and (A.15) imply T2 = enabled(S k D; ;; T2). Finally, the inseparability

of T2 for S k D follows from the fact that enabled(S1 k D; ;; T
0) � enabled(S k D; ;; T 0), for all

T 0 � T2, and from the inseparability of T2 for S1 k D.

This completes the �rst part of the proof of Lemma 4.10, namely that C '+
f D implies C 'f D.

Now we tackle the other direction \=)" of the proposition under consideration, i.e., we prove that

C 'f D entails C '+
f D. Let us assume C 'f D. Thus, C and D have the same responses in all Cf{

contexts. In particular, then, they have the same responses in all parallel Cf{contexts, i.e., (C k P ) +E A

if and only if (D k P ) +E A, for all P 2 PCf and E;A ��n �. This is because �[x] =df x k P is simply

a special context in Cf , by virtue of the closure properties. To obtain C '+
f D, however, we must also

verify, for all responses A, that A is active for C if and only if A is active for D. We prove this property by

contradiction. Suppose that, for some P 2 PC and E;A ��n �, we have (C k P ) +E A and (D k P ) +E A,

but �(C;A) 6= �(D;A). We may assume w.l.o.g. that E = ;, as E can always be accounted for in P , and that

triggered(C;A) = ; but triggered(D;A) 6= ;. Hence, no transition of C is triggered in A, but some transitions

of D are. We are going to exhibit a context �[x] 2 Cf such that �[D] + A but �[C] 6+ A. Let e 2 � be

some fresh event that does not already occur in either C or D. Consider the context �[x] =df (t1 + x) k t2,

where t1 is the transition �=e and where t2 is the transition �=A. By Assumption (i) about fragment Cf , we
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conclude �[x] 2 Cf . We claim that (1) �[D] + A and (2) �[C] 6+ A. As for (1), we argue as follows. The

given response (D k P ) + A implies that there exists a set T of transitions which are admissible for D k P ,

such that A = act(T ). We claim that T1 =df (T \ trans(D)) [ ft2g is admissible for D k t2. First of all,

T1 = (T \ trans(D)) [ ft2g

= (consistent(D k P ; T ) \ triggered(D k P ;A) \ trans(D)) [ ft2g

= (consistent(D;T ) \ triggered(D;A)) [ ft2g

= consistent(D k t2; T1) \ triggered(D k t2; A)

= consistent(D k t2; T1) \ triggered(D k t2; act(T1))

= enabled(D k t2; ;; T1) :

We wish to show that T1 is also inseparable for D k t2. To this end, assume T 0 � T1. We must prove that

there exists a transition t 2 T1nT 0 that is triggered by the events in act(T 0). Of course, t2 is always triggered,

so if t2 2 T1 nT 0, then we are done. Assume t2 2 T 0. This implies A � act(T 0), which means by construction

of T1 that act(T
0) triggers all transitions in T1. Hence, we may choose any transition t 2 T1nT

0 to witness the

inseparability of T1. Thus, we have shown that T1 is admissible for D k t2. We also have by our assumptions

that triggered(D;A) 6= ;, i.e., at least one transition of D is enabled by A, so that T1 \ trans(D) 6= ;. We

may now apply Lemma 4.9 (distributivity) to conclude that T1 is admissible for (t1 + D) k t2 = �[D]. As

A = act(T1), this yields �[D] + A. Surely, e 62 A since the transitions in T1 does not mention event e at all.

It remains to be seen that �[C] 6+ A. We establish this statement by showing that event e must be

contained in all responses of �[C]. In essence, we prove that the only response of �[C] is A [ feg. Let T

be an admissible set of transitions for �[C] = (t1 + C) k t2. We �rst observe that T cannot include any

transition from C. Otherwise, T would have to be admissible for C k t2 by Lemma 4.9. Clearly, t2 2 T ,

since t2 is unconditionally enabled and consistent with all transitions of C k t2. But then ft2g � T and,

due to the inseparability of T , there would have to exist some transition t 2 T n ft2g that is triggered by

act(ft2g) = A. This transition t would have to come from con�guration C. But this is impossible since

triggered(C;A) = ; by our initial assumption, i.e., con�guration C does not contain any transition enabled

by A. Hence, T \ trans(C) = ;. Lemma 4.9 then implies that T must be admissible for t1 k t2. Since both

transitions t1 and t2 are unconditionally enabled and consistent with each other, we have T = ft1; t2g. Thus,

any response act(T ), for every admissible set T for �[C], must be identical to A [ feg.

Appendix B. Proof of Lemma 4.4 (Expansion). For notational convenience, we introduce the

abbreviations C =df (P + Q) k R and D =df (watch(P;Q) k P k R) + (watch(Q;P ) k Q k R). We tacitly

assume that the transitions in both copies of R in the expansion D are named apart. To indicate the two

copies of R we use the notations Rl and Rr for the left and right occurrences, respectively. By Prop. 4.1,

C ' D if and only if for all parallel con�gurations S 2 PC and A ��n �:

1. (C k S) + A implies (D k S) + A and �(C;A) = �(D;A).

2. (D k S) + A implies (C k S) + A and �(C;A) = �(D;A).

It is easy to see that �(C;A) = �(D;A) whenever A is a response of both C k S and D k S. The only

possible situation where some transition in one of C and D is triggered but none in the other, would be

when A enabled one of the watchdogs in D, as these transitions are not contained in C. But this cannot be

the case since then response A would contain event ?. In fact, no transitions of any watchdog can ever be

enabled in a response A. Thus, condition �(C;A) = �(D;A) holds in Statements (1) and (2).
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For Statement (1), we assume that (C k S) + A, i.e., ((P + Q) k R k S) + A. Further, we let

T � trans((P + Q) k R k S) be a corresponding set of admissible transitions with act(T ) = A. By Lemma 4.9,

we have the following three cases to consider:

T is admissible for (P k R k S) ; and T \ trans(P ) 6= ; : (B.1)

T is admissible for (Q k R k S) ; and T \ trans(Q) 6= ; : (B.2)

T is admissible for both P k R k S and Q k R k S ; and T � trans(R k S) : (B.3)

In Case (B.1), triggered(P;A) 6= ;, so the watchdog watch(P;Q) is switched o�, i.e., all transitions are

disabled. Hence, T is admissible for watch(P;Q) k P k Rl k S. Please recall the watchdog property (cf.

Prop. 4.3), namely that T is admissible for watch(P;Q) k P k Rl k S if and only if T is admissible for

P k Rl k S and triggered(P;A) 6= ; or triggered(Q;A) = ;, where A = act(T ). But T is admissible for

watch(P;Q) k P k Rl k S and T \ trans(P ) 6= ;, i.e., T \ trans(watch(P;Q) k P k Rl) 6= ;, which implies

(D k S) + A by Lemma 4.9. This proves Statement (1) in Case (B.1). Case (B.2) is completely symmetric.

Finally, consider Case (B.3), in which no transitions of P orQ can be enabled, so both watchdogs watch(P;Q)

and watch(Q;P ) are switched o�. Then, T must be admissible for both watch(P;Q) k P k Rl k S and

watch(Q;P ) k Q k Rr k S, when invoking the watchdog property (cf. Prop. 4.3). If T � trans(S), then T

is admissible for D k S by Lemma 4.9. This shows (D k S) + A. If T \ trans(R) 6= ;, then T is admissible

for watch(P;Q) k P k Rl k S. From Lemma 4.9 again, we infer that T must be admissible for D k S, so

(D k S) + A, as desired.

Now we show Statement (2) starting from (D k S) + A. Let T with act(T ) = A be an admissible set

of transitions for ((watch(P;Q) k P k Rl) + (watch(Q;P ) k Q k Rr)) k S. Again, we use Lemma 4.9 to

distinguish the following three possible situations:

T is admissible for watch(P;Q) k P k Rl k S ; and T \ trans(watch(P;Q) k P k Rl) 6= ; : (B.4)

T is admissible for watch(Q;P ) k Q k Rr k S ; and T \ trans(watch(Q;P ) k Q k Rr) 6= ; : (B.5)

T is admissible for watch(P;Q) k P k Rl k S and watch(Q;P ) k Q k Rr k S ; and T � trans(S) : (B.6)

In Case (B.4), if T is admissible for watch(P;Q) k P k Rl k S, then no transition of watchdog watch(P;Q)

can be enabled; otherwise, A = act(T ) would contain event ?. Thus, T � trans(P k Rl k S), whence

T \ trans(P k Rl) = T \ trans(watch(P;Q) k P k Rl) 6= ;, and T is admissible for P k Rl k S. Consequently,

T is admissible for P k R k S. As watch(P;Q) is disabled by A, we know that P must be enabled or Q

be disabled. In the �rst case, T \ trans(P ) 6= ;, so by application of Lemma 4.9 we conclude that T is

admissible for (P + Q) k R k S, which proves (C k S) + A. If, however, T \ trans(P ) = ;, then we also have

T \ trans(Q) = ; since then Q is disabled by A. This means T � trans(Rl k S) and T must be admissible

for both P k R k S and Q k R k S. Lemma 4.9 yields that T is admissible for C k S, whence (C k S) + A.

Case (B.5) is symmetric and, therefore, omitted. Case (B.6) remains to be checked. In this situation,

the response stems from S alone, as no transition in (watch(P;Q) k P k Rl) + (watch(Q;P ) k Q k Rr)

is enabled. As a consequence, no transition in P + Q is enabled, either. Since T is admissible for both

watch(P;Q) k P k Rl k S and watch(Q;P ) k Q k Rr k S, by the properties of watchdogs (cf. Prop. 4.3),

T is admissible for P k Rl k S and Q k Rr k S at the same time. Moreover, since T does not contain

any transitions from Rr and Rl, it must then be admissible for both P k R k S and Q k R k S. Finally,

T � trans(S) implies T � trans(R k S), so that Lemma 4.9 may be used to show that T is admissible for

C k S. Hence, (C k S) + A. This completes the proof of Lemma 4.4.
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Appendix C. Alternative Approach: Encoding the Choice Operator. Another way for obtain-

ing a fully{abstract semantics for Statecharts, based on our results for the parallel fragment presented in

Sec. 3, is to eliminate the choice operator by syntactic encoding using the parallel operator. The advantage

of such a method over the one employed in Sec. 4 is that we can use the simpler semantics of the parallel

fragment of our con�guration algebra, namely behaviors, as opposed to the more involved contexts and en-

abling information. However, the alternative method is, again, not purely semantic as it involves a syntactic

transformation process.

The key observation for the work in this section is that the choice operator + may be eliminated in terms

of the parallel operator k by using transition names as special events. Intuitively, the event represented by

a transition name t 2 T , which we refer to as transition event, indicates that \transition t has �red."

Technically, we let �+ =df � [ T denote the extended set of events. The idea behind our encoding is to

implement the constraint of the operational semantics, which governs the handling of +, explicitly in terms

of transition events. More precisely, for every con�guration C and set T � T of transition names, we de�ne a

parallel con�guration C+
T that is equivalent to C under the assumption that no transition from T is executed

together with a transition in C, i.e., parameter T in translation C+
T represents a set of transitions that must

be orthogonal to all transitions in C. In our encoding we achieve this by adding T as negative trigger events

to all transitions in C. At the same time, we add to every transition t in C its transition name t as a new

event to its action, so that whenever t is �red this fact is signaled to the environment. Transition event t

can be used by the environment to block those transitions that are not orthogonal, or inconsistent, to t. As

an example, consider con�guration

((t1 : a=b + t2 : b=c) k t3 : c=d)
+
; =df (t1 : t2; a=b; t1) k (t2 : t1; b=c; t2) k t3 : c=d :

The mutual exclusion of transitions t1 and t2 is now generated by the event signaling scheme regarding

transition events t1 and t2. However, in the encoding, actions will no longer be uniquely determined by

transition names. Hence, the actions generated by a given set T of transitions now depend on con�guration C.

To account for this, we replace act(T ) by the notation generated(C; T ) in the sequel.

We now formalize our translation. Let T ��n T be a �nite set of transition names and C be an arbitrary

con�guration. We de�ne the encoding C+
T of C relative to T inductively along the structure of C.

(t : P;N=A)
+

T =df t : P;N [ T=A [ ftg

(C1 k C2)
+
T =df (C1)

+
T k (C2)

+
T

(C1 + C2)
+
T =df (C1)

+
T[trans(C2)

k (C2)
+
T[trans(C1)

For notational convenience, we often write C+ instead of C+
; . Observe that C and C+ have exactly the same

transition names, i.e., trans(C) = trans(C+). The di�erence between the two con�gurations is that transitions

in C+ have additional negative triggers and action events. More precisely, each transition t : P;N=A in C

corresponds to transition t : P;N [N 0=A; t in C+, where N 0 =df trans(C) n consistent(C; ftg). In other

words, the additional negative triggers are the names of all transitions which are in con
ict with t, and

the extra action is the transition name t. Hence, generated(C+; T ) = generated(C; T ) [ T . The equivalence

between C and C+ is highlighted by the following lemma which implies that a �nite set T of transitions is

E{admissible for C if and only if it is E{admissible for C+.

Lemma C.1. Let C be a con�guration and E a set of events, which do not contain any transition event.

Then, enabled(C;E; T ) = enabled(C+; E; T ) holds, for every set T � trans(C) of transitions.
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Proof. Recall that trans(C) = trans(C+). Let T � trans(C) be chosen arbitrarily. The equation

enabled(C;E; T ) = enabled(C+; E; T ) is equivalent to

consistent(C; T ) \ triggered(C;E [ generated(C; T )) =

consistent(C+; T ) \ triggered(C+; E [ generated(C+; T )) :

Let t 2 consistent(C; T ) \ triggered(C;E [ generated(C; T )). As C+ 2 PC, we have consistent(C+; T ) =

trans(C+), whence t 2 consistent(C+; T ). It remains to show t 2 triggered(C+; E [ generated(C+; T )).

We know that, if t is of form t : P;N=A in C, then it must look like t : P;N [N 0=A; t in C+, where

N 0 =df trans(C) n consistent(C; ftg). Since t 2 triggered(C;E [ generated(C; T )) and generated(C+; T ) =

generated(C; T ) [ T , we just need to show that N \ T = ; and N 0 \ (generated(C; T ) [ T ) = ;. The

former follows from the fact that C does not use transition events, and also N 0 \ generated(C; T ) = ;

holds for the same reason. The missing piece is N 0 \ T = ; which can be established as follows. By

assumption, t 2 consistent(C; T ) and, thus, T � consistent(C; ftg), by the property of consistency. But as

N 0 = trans(C) n consistent(C; ftg), the desired result is immediate.

For the other direction, assume t 2 consistent(C+; T ) \ triggered(C+; E [ generated(C+; T )), which is

equivalent to t 2 triggered(C+; E [ generated(C+; T )) because of consistent(C+; T ) = trans(C+). Suppose t

in C+ has the form t : P;N [N 0=A; t, where N 0 = trans(C) n consistent(C; ftg). Since t is triggered in C+

by E [ generated(C+; T ) = E [ generated(C; T ) [ T , we must have

P � E [ generated(C; T ) [ T and (C.1)

(N [N 0) \ (E [ generated(C; T ) [ T ) = ; : (C.2)

As P cannot contain any transition name, Prop. (C.1) implies P � E [ generated(C; T ). This yields

the �rst half of the argument that t is triggered in C by E [ generated(C; T ). Recall that t in C is

t : P;N=A. The second half, thus, is to show that N \ (E [ generated(C; T )) = ;. But this is an

immediate consequence of Prop. (C.2), i.e., t 2 triggered(C;E [ generated(C; T )), too. It remains to be

seen why t 2 consistent(C; T ). Here we can use N 0 = trans(C) n consistent(C; ftg) in conjunction with

Prop. (C.2). This property implies that N 0 and T are disjoint, which, because of T � trans(C), means

T � consistent(C; ftg). But this is the same as stating t 2 consistent(C; T ). Thus, we have shown

t 2 consistent(C; T ) \ triggered(C;E [ generated(C; T )), which completes our proof.

A direct consequence of Lemma C.1 is that our encoding preserves the step semantics of con�gurations, up

to transition names.

Proposition C.2. For all con�gurations C, event sets E;A ��n �, and contexts �[x], such that C

and �[x] do not contain transition events:

1. �[C] +E A implies 9T � trans(C): �[C+] +E (A [ T ) .

2. �[C+] +E A implies 9T � trans(C): �[C] +E (A n T ) .

Proof. We �rst prove the special case �[C] = C where the context is trivial but C may be arbitrary, i.e.,

C possibly contains transition names as events. We have to establish the following two properties:

1. C +E A implies 9T � trans(C): C+ +E (A [ T ) and

2. C+ +E A implies 9T � trans(C): C +E (A n T ) .

To prove Case (1), suppose C +E A. Then, there exists an E{admissible set T � trans(C) of transitions

from C for which A = E [ generated(C; T ). Since, by Lemma C.1, enabled(C;E; T ) = enabled(C+; E; T ),
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for all T � trans(C) = trans(C+), transition set T must also be an E{admissible set for C+. We de�ne

B =df E [ generated(C+; T ), whence C+ +E B. Since generated(C+; T ) = generated(C; T ) [ T , we obtain

B = A [ T , as required. Next, consider Case (2) and assume C+ +E A. Thus, there exists a set T of

E{admissible transitions for C+ such that A = E [ generated(C+; T ). Again, by Lemma C.1, T must be

E{admissible for C, too. De�ning B =df E [ generated(C; T ) we have C +E B. Since generated(C+; T ) =

generated(C; T )[ T and generated(C; T )\ T = ;, we conclude B = A nT . This implies C +E (A n T ), which

proves Case (2).

Finally, let us consider the general case. Its proof depends on the fact that for all contexts �[x] and

con�gurations C:

(�[C+])
+
= (�[C])+; (C.3)

which can be shown without di�culty by a separate induction on the structure of �[x]. We also assume

that �[C] does not contain any transition names as events. Suppose �[C] +E A. Then, Case (2) implies

that there exists a transition set T � trans(�[C]) satisfying (�[C])
+ +E ((A [ T )). Now, Prop. (C.3) implies

(�[C+])
+
+E (A [ T ). From this, by Prop. (2), we obtain T 0 � trans(�[C+]) = trans(�[C]) such that

�[C+] +E ((A [ T ) n T 0). Since A \ T 0 = ;, we obtain (A [ T ) n T 0 = A [ (T n T 0). This was to be shown.

For the other direction, let �[C+] +E A. As �[�] does not have any transition names as events, all

transition names in A must come from C, i.e., A \ T � trans(C). We employ Prop. (2) to conclude

(�[C+])
+
+E (A [ T ), for some transition set T � trans(�[C+]) = trans(�[C]). Further, Prop. (C.3) implies

(�[C])
+ +E (A [ T ), whence by Prop. (2), there exists T 0 � trans(�[C]) such that �[C] +E ((A [ T ) n T 0).

Since by assumption �[C] does not contain any transition names as events, we must have T 0 � T . Moreover,

as A is the response of �[C+], the only transition names in A are those from trans(C), in accordance with our

assumption about the context. Hence, there exists a transition set T 00 � trans(C) such that A nT 0 = A nT 00.

This implies (A [ T ) n T 0 = (A n T 0) [ (T n T 0) = A n T 00 [ ; = A n T 00, as desired.

Let us assume that C is a con�guration that does not use transition names as events. Then Prop. C.2 implies

that C and C+ have exactly the same step responses, if we ignore all transition names in the responses of

the encoding. In fact, the di�erence between C and C+ is that the responses of the latter also record all

transitions from C that have �red to produce the given response. Finally, observe that Prop. C.2 actually

states that C and C+ have, up to transition names, the same responses in all context, whence our encoding

is compositional.
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